Simulink® PLC Coder™
User's Guide

7

MATLAB&SIMULINK

R2020b ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® PLC Coder™ User's Guide
© COPYRIGHT 2010-2020 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

March 2010 Online only New for Version 1.0 (Release 2010a)
September 2010 Online only Revised for Version 1.1 (Release 2010b)
April 2011 Online only Revised for Version 1.2 (Release 2011a)
September 2011 Online only Revised for Version 1.2.1 (Release 2011b)
March 2012 Online only Revised for Version 1.3 (Release 2012a)
September 2012 Online only Revised for Version 1.4 (Release 2012b)
March 2013 Online only Revised for Version 1.5 (Release 2013a)
September 2013 Online only Revised for Version 1.6 (Release 2013b)
March 2014 Online only Revised for Version 1.7 (Release 2014a)
October 2014 Online only Revised for Version 1.8 (Release 2014b)
March 2015 Online only Revised for Version 1.9 (Release 2015a)
September 2015 Online only Revised for Version 2.0 (Release 2015b)
March 2016 Online only Revised for Version 2.1 (Release 2016a)
September 2016 Online only Revised for Version 2.2 (Release 2016b)
March 2017 Online only Revised for Version 2.3 (Release 2017a)
September 2017 Online only Revised for Version 2.4 (Release 2017b)
March 2018 Online only Revised for Version 2.5 (Release 2018a)
September 2018 Online only Revised for Version 2.6 (Release 2018b)
March 2019 Online only Revised for Version 3.0 (Release 2019a)
September 2019 Online only Revised for Version 3.1 (Release 2019b)
March 2020 Online only Revised for Version 3.2 (Release 2020a)

September 2020 Online only Revised for Version 3.3 (Release R2020b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

Getting Started

1]

Simulink PLC Coder Product Description 1-2
Prepare Model for Structured Text Generation 1-3
Tasking Mode 1-3
SOIVELS . . e 1-3
Configuring Simulink Models for Structured Text Code Generation 1-3
Check System Compatibility for Structured Text Code Generation 1-6
Generate and Examine Structured TextCode 1-9
Generate Structured Text from the Model Window 1-9
Generate Structured Text with the MATLAB Interface 1-10
View Generated Code i e 1-11
Propagate Block Descriptions to Code Comments 1-13
Files Generated by Simulink PLC Coder 1-14
Specify Custom Names for Generated Files 1-16
Import Structured Text Code Automatically 1-17
PLC IDEs That Qualify for Importing Code Automatically 1-17
Generate and Automatically Import Structured Text Code 1-17
Troubleshoot Automatic Import Issues 1-18
Using Simulink Test with Simulink PLCCoder 1-20
Limitations e 1-21
Simulation and Code Generation of Motion Instructions 1-22
Workflow for Using Motion Instructionsin Model 1-22
Simulation of the Motion APIModel 1-24
Structured Text Code Generationcov.vu... 1-26
Adding Support for Other Motion Instructions 1-26

Mapping Simulink Semantics to Structured Text

2|

Generated Code Structure for Simple Simulink Subsystems 2-2

Generated Code Structure for Reusable Subsystems 2-4

iii

iv

Contents

Generated Code Structure for Triggered Subsystems 2-6

Generated Code Structure for StateflowCharts 2-8
Stateflow Chart with Event Based Transitions 2-8
Stateflow Chart with Absolute Time Temporal Logic 2-9

Generated Code Structure for MATLAB Function Block 2-12
Generated Code Structure for Multirate Models 2-14
Generated Code Structure for Subsystem Mask Parameters 2-16
Global Tunable Parameter Initialization for PCWORX 2-20
Considerations for Nonintrinsic Math Functions 2-21

Generating Ladder Diagram

3|

Simulink PLC Coder Ladder Diagram Code Generation 3-2
Ladder Diagram Generation Workflow 3-4

Prepare Chart for Simulink PL.C Coder Ladder Diagram Code Generation

3-6
Design PLC Application with Stateflow 3-6
Create Test Harness for Chart 3-7

Generate Simulink PLC Coder Ladder Diagram Code from Stateflow Chart

.. 3-9
Stateflow Chart and Ladder Logic Diagram 3-9
Generate Ladder Diagram from Chart 3-12
Generate Ladder Diagram Along with TestBench 3-12

Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram

... 3-14
Import Ladder Diagram XMLttt 3-14
Verify Ladder Diagram with Test Bench 3-16

Restrictions on Stateflow Chart for Ladder Diagram Generation 3-18
Supported Features in Ladder Diagram 3-20
Supported Ladder Elements, 3-20
Import L5X Ladder Files into Simulink 3-22
Description of the Ladder Diagram 3-22
Import Ladder Diagramc0 i 3-23
Modeling and Simulation of Ladder Diagrams in Simulink 3-27
Model an AOI Prescan Routine, 3-31
Ladder Model Simulation 3-32

Generating Ladder Diagram Code from Simulink 3-34

Generating C Code from Simulink Ladder 3-36
Verify Generated Ladder Diagram Code 3-38
Simulink PLC Coder Workflow vs. Rockwell Automation RSLogix IDE
Workflow 3-42
Create Custom Instruction in PLC Ladder Diagram Models 3-44
Create User-Defined Instruction 3-44
Calculate Square Root by using Custom Instruction Block 3-45

Generating Test Bench Code

4

How Test Bench Verification Works 4-2
Integrate Generated Code with Custom Code 4-3
Import and Verify Structured Text Code 4-4
Generate, Import, and Verify Structured Text 4-4
Import and Verify Structured Text to PHOENIX CONTACT (previously KW)
Software MULTIPROG 5.0 and Phoenix Contact PC WORX 6.0 IDEs ... 4-4
Troubleshooting: Long Test Bench Code Generation Time 4-5
Verify Generated Code That Has Multiple Test Benches 4-7
Troubleshooting: Test Data Exceeds Target Data Size 4-8
Limitationst e 4-9

S|

Information in Code Generation Reports 5-2
Create and Use Code Generation Reports 5-4
Generate a Traceability Report from Configuration Parameters 5-4
Keepthe Report Current 5-5
Trace from CodetoModel 5-3
Trace from Modelto Code 5-6
Model Web View in Code Generation Report 5-7
Generate a Static Code Metrics Report 5-11
Generate a Traceability Report from the Command Line 5-12
View Requirements Links from Generated Code 5-13
Working with the Static Code Metrics Report 5-14
Workflow for Static Code Metrics Report 5-14
Report Contents i i 5-14

Function Block Information 5-15

Working with Tunable Parameters in the Simulink PLC Coder

Environment

Block Parameters in Generated Code 6-2
Control Appearance of Block Parameters in Generated Code 6-4
Configure Tunable Parameters with Simulink.Parameter Objects 6-4
Make Parameters Tunable Using Configuration Parameters Dialog Box ... 6-6

Controlling Generated Code Partitions

7

Generate Global Variables from Signals in Model 7-2

Control Code Partitions for Subsystem Block 7-3
Control Code Partitions Using Subsystem Block Parameters 7-3
One Function Block for Atomic Subsystems 7-3
One Function Block for Virtual Subsystems 7-3
Multiple Function Blocks for Nonvirtual Subsystems 7-6

Control Code Partitions for MATLAB Functions in Stateflow Charts 7-8

Integrating Externally Defined Identifiers

8|

Integrate Externally Defined Identifiers 8-2

Integrate Custom Function Block in Generated Code 8-3

IDE-Specific Considerations

9

Integrate Generated Code with Siemens IDE Project 9-2
Integrate Generated Code with Siemens SIMATIC STEP 7 Projects 9-2
Integrate Generated Code with Siemens TIA Portal Projects 9-2

Use Internal Signals for Debugging in RSLogix 5000 IDE 9-3

Contents

Rockwell Automation RSLogix Requirements 9-4

Add-On Instruction and Function Blocks 9-4
Double-Precision Data Typest 9-4
Unsigned Integer Data Typesot e 9-14
Unsigned Fixed-Point Data Typest .. 9-14
Enumerated Data Typeso e 9-4
Reserved Keywords e 9-14
Rockwell Automation IDE selection 9-5
Siemens IDE Requirements 9-6
Target PLCs and Supported Data Types 9-6
Double-Precision Floating-Point Data Types 9-6
int8 Data Type and Unsigned Integer Types 9-6
Unsigned Fixed-Point Data Typest nnn. .. 9-7
Enumerated Data Typeso e 9-7
Selectron CAP1131 IDE Requirements 9-8
Double-Precision Floating-Point Data Types 9-8
Enumerated Data Types oot e 9-8

Supported Simulink and Stateflow Blocks

10|

Supported Blocks 10-2
View Supported Blocks Library 10-2
Supported Simulink Blocks 10-2
Supported Stateflow Blocks 10-9
Blocks with Restricted Support i 10-9

Limitations
11

Structured Text Code Generation Limitations 11-2
General Limitations i 11-2
Restrictions 11-2
Negative Zero 11-3
Divide By Zero 11-3
Fixed-Point Data Type Multiword Operations 11-3

Ladder Logic Code Generation Limitations 11-4
plcladderlib Limitations 11-4
Ladder Diagram Import Limitations 11-4
Ladder Diagram Modeling and Simulation Limitations 11-4
Ladder Diagram Code Generation Limitations 11-4
Ladder Diagram Verification Limitations 11-4

Configuration Parameters for Simulink PLC Coder Models

12

PLCCoder: General i, 12-2
PLC Coder: General Tab Overviewcovviiiiinnenn. 12-2
Target IDE 12-3
Show Full Target List e 12-5
Target IDE Path 12-6
Code Output Directoryot 12-7
Generate Testbench for Subsystem 12-7
Include Testbench DiagnosticCode 12-8
Generate Functions Instead of FunctionBlock 12-8
Allow Functions with ZeroInputs 12-9
Suppress Auto-Generated Data Types 12-10
Emit Data type Worksheet Tags for PCWorx 12-10
Aggressively Inline Structured Text FunctionCalls 12-11

PLC Coder: Comments it 12-12
Comments OVEIVIEWottt e e e e 12-12
Include Comments it 12-12
Include Block Description 12-13
Simulink Block / Stateflow Object Comments 12-14
Show Eliminated Blocks 12-14

PLC Coder: Optimization 12-15
Optimization OVeIVIEW it e e e e 12-15
Default Parameter Behavior 12-16
Signal Storage Reuse i 12-17
Remove Code from Floating-Point to Integer Conversions That Wraps Out-

Of-Range Values 12-17
Generate Reusable Code 12-18
Inline Named Constants i ininenn.. 12-19
Reuse MATLAB Function Block Variables 12-20
Loop Unrolling Threshold 12-20

PLC Coder: Identifiers 12-22
Identifiers OVerviewW i e e 12-23
Use Subsystem Instance Name as Function Block Instance Name 12-23
Override Target Default Maximum Identifier Length 12-23
Maximum Identifier Length 12-24
Override Target Default enum Name Behavior 12-24
Generate enum Cast Function 12-25
Use the Same Reserved Names as Simulation Target 12-26
Reserved Namesttt e e 12-26
Externally Defined Identifiers 12-27
Preserve Alias Type Names for Data Types 12-27

PLC Coder: Report i, 12-29
Report OVerview i i e e 12-29
Generate Traceability Report 12-30
Generate Model Web View i 12-30
Open Report Automatically 12-31

PLC Coder:Interface 12-32
Interface OVEIVIEW i 12-32

viii Contents

Generate Logging Code i 12-33
Keep Top-Level ssmethod Name the Same as the Non-Top Level Name

.. 12-33
Remove Top-level Subsystem Ssmethod Type 12-34
Remove Initialization Statements for Externally Defined State Variables

.. 12-34
Absolute-Time Temporal Logic 12-35

External Mode

13

External Mode Logging i 13-2
Generate Structured Text Code with Logging Instrumentation 13-3

Use the Simulation Data Inspector to Visualize and Monitor the Logging

Data 13-7
Set Up and Download Code to the Studio 5000 IDE 13-7
Configure RSLInx OPC Serverttt 13-8

Use PLC External Mode Commands to Stream and Display Live Log Data
... 13-8

Ladder Diagram Instructions

14

Instructions Supported in Ladder Diagram 14-2

15|

Ladder Diagram Blocks 15-2

16|

Block Parameters 16-2
Model Parameters 16-3
Limitations 16-4

ix

Generating PLC Code for Multirate Models

17|

Multirate Model Requirements for PLC Code Generation 17-2
Model Configuration Parameters 17-2
Limitationst 17-2

Generating PLC Code for MATLAB Function Block

18|

Configuring the rand function for PLC Code generation 18-2
Width block requirements for PLC Code generation 18-3
Workspace Parameter Data Type Limitations 18-4
Limitations e 18-5

Model Architecture and Design

19

Fixed Point Simulink PLC Coder Structured Text Code Generation 19-2
Block Parameters e 19-2
Model Parameters 19-3
Limitationso i 19-4

Generating Simulink PLC Coder Structured Text Code For Multirate

Models 19-7
Multirate Model Requirements for PLC Code Generation 19-7
MATLAB Function Block Simulink PLC Coder Structured Text Code
Generation 19-9
Configuring the rand function for PLC Code Generation 19-9
SimulinkWidth Block Requirements for PLC Code generation 19-9
Workspace Parameter Data Type Limitations 19-9
Limitations 19-9

PLC Coder Code Deployment

20

Deploy Structured Text i 20-2
Learning Objectives i e 20-2
Prerequisites 20-2
WOTKIlOW . . . 20-2
Importing Generated Structured Text Code Manually 20-2

Contents

Deploy Ladder Diagram iiiiiiiin.. 20-5

Learning Objectives e 20-5
Prerequisites 20-5
WoOrTKElOW . . . 20-5
Importing Generated Ladder Diagram Code Manually 20-5

Simulink PLC Coder Structured Text Code Generation For
Simulink Data Dictionary (SLDD)

21|

Structured Text Code Generation Support for Simulink Data Dictionary

... 21-2
Limitations e 21-2
Generate Structured Text Code For Simulink Data Dictionary Defined
Model Parameters i 21-3
Learning Objectiveso ottt e 21-3
Requirements i 21-3
WOTKEIOW . . 21-3

Simulink PLC Coder Structured Text Code Generation For
Enumerated Data Type

22

Structured Text Code Generation for Enum To Integer Conversion 22-2

IDE Limitations 22-3

Distributed Code Generation with Simulink P1.C Coder

23

Distributed Model Code Generation Options 23-2
Generated Code Structure for PLC_ RemoveSSStep 23-3
Generated Code Structure for PLC_PreventExternalVarlInitialization . . 23-5
PLC_RemoveSSStep for Distributed Code Generation 23-7
Structured Text Code Generation for Subsystem Reference Blocks ... 23-10
Distributed Code Generation Limitations 23-12

xi

xii

Contents

Examples Book

24

Generate Structured Text Code for a Simple Simulink® Subsystem . . . 24-2

Generating Structured Text for a Simple Simulink® Subsystem without
Internal State 24-7

Generating Structured Text for a Hierarchical Simulink® Subsystem with

Virtual Subsystems 24-8
Generating Structured Text for a Hierarchical Simulink® Subsystem
.. 24-10
Generating Structured Text for a Reusable Simulink® Subsystem . . . 24-12
Generating Structured Text for a Simple Simulink® Subsystem Using
Multirate 24-14

Simulate and Generate Structured Text Code for a Stateflow® Chart . 24-16

Generating Structured Text for a MATLAB® Block 24-19
Generating Structured Text for a Feedforward PID Controller 24-20
Mapping Tunable Parameters to Structured Text 24-22
Mapping Tunable Parameters Defined Using Simulink.Parameter Objects

toStructured Text 24-24
Simulate and Generate Code for Speed Cruise Control System 24-28
Variable Step Speed Cruise Control System 24-30
Simulate and Generate Code for Airport Conveyor Belt Control System

.. 24-32

Generating Structured Text for Simulink® Model with Fixed-Point Data

TYPES . . 24-33
Generating Structured Text for Stateflow® Chart with Absolute Time

Temporal Logic 24-35
Integrating User Defined Function Blocks, Data Types, and Global

Variables into Generated Structured Text 24-37
Simulating and Generating Structured Text Code for Rockwell Motion

Instructions 24-39
Tank Control Simulation and Code Generation by Using Ladder Logic

.. 24-41

Using Timers in Ladder Logic 24-44

Temperature Control Simulation and Code Generation Using Ladder
Logic

Elevator Control Simulation and Code Generation Using Ladder Logic

Structured Text Code Generation for Simulink Data Dictionary
Structured Text Code Generation for Subsystem Reference Blocks . . .
PLC_RemoveSSStep for Distributed Code Generation
Structured Text Code Generation for Enum To Integer Conversion . . .
Structured Text Code Generation for Integer To Enum Conversion . . .

PLC_PreventExternalVarlnitialization for Distributed Code Generation

24-47

24-51

24-54

24-55

24-57

24-60

24-61

24-62

24-64

xiii

Getting Started

* “Simulink PLC Coder Product Description” on page 1-2

* “Prepare Model for Structured Text Generation” on page 1-3

* “Generate and Examine Structured Text Code” on page 1-9

* “Propagate Block Descriptions to Code Comments” on page 1-13

* “Files Generated by Simulink PLC Coder” on page 1-14

* “Specify Custom Names for Generated Files” on page 1-16

* “Import Structured Text Code Automatically” on page 1-17

» “Using Simulink Test with Simulink PL.C Coder” on page 1-20

* “Simulation and Code Generation of Motion Instructions” on page 1-22

1 Getting Started

Simulink PLC Coder Product Description

1-2

Generate IEC 61131-3 Structured Text and Ladder Diagrams for PLCs and PACs

Simulink PLC Coder generates hardware-independent IEC 61131-3 Structured Text and Ladder
Diagrams from Simulink models, Stateflow® charts, and MATLAB® functions. The Structured Text and
Ladder Diagrams are generated in PLCopen XML and other file formats supported by widely used
integrated development environments (IDEs) including 3S-Smart Software Solutions CODESYS,
Rockwell Automation® Studio 5000, Siemens® TIA Portal, and OMRON® Sysmac® Studio. As a result,
you can compile and deploy your application to numerous programmable logic controller (PLC) and
programmable automation controller (PAC) devices.

Simulink PLC Coder generates test benches that help you verify the Structured Text and Ladder
Diagrams using PLC and PAC IDEs and simulation tools. It also provides code generation reports with
static code metrics and bidirectional traceability between model and code. Support for industry
standards is available through IEC Certification Kit (for IEC 61508 and IEC 61511).

https://www.mathworks.com/products/iec-61508.html

Prepare Model for Structured Text Generation

Prepare Model for Structured Text Generation

In this section...

“Tasking Mode” on page 1-3

“Solvers” on page 1-3

“Configuring Simulink Models for Structured Text Code Generation” on page 1-3
“Check System Compatibility for Structured Text Code Generation” on page 1-6

Tasking Mode

This step is only required if your Simulink model contains multi-rate signals. If your Simulink model
does not contain multi-rate signals, you may proceed to solver selection.

Simulink PLC Coder only generates code for single-tasking subsystems. For multi-rate subsystems,
you must first explicitly set the tasking mode to single-tasking before selecting a solver. In the model
configuration, on the Solver pane, clear the check box for Treat each discrete rate as a separate
task.

Solvers

Choose a solver for your Simulink PL.C Coder model.

Model Solver Setting

Variable-step Use a continuous solver. Configure a fixed sample time for the subsystem for
which you generate code.

Fixed-step Use a discrete fixed-step solver.

Configuring Simulink Models for Structured Text Code Generation

You must already have a model for which you want to generate and import code to a PLC IDE. Before
you use this model, perform the following steps.

1 Inthe Command Window, open your model.

g
-
Scope
A\ ol: > NED
v - *""’f Ot
Sime Wave Gain

l al
4

1-3

1 Getting Started

2 Configure the model to use the fixed-step discrete solver. Click the solver link in the lower-right
corner. The Solver information pane opens. In the pane, click the View solver settings button
to open the Solver pane of the model configuration parameters. Under the Solver selection, set
Type to Fixed-step and Solver to discrete (no continuous states).

If your model uses a continuous solver, has a subsystem, configure a fixed sample time for the
subsystem for which you generate code.

3 Save this model as plcdemo simple subsysteml.

Create a subsystem containing the components for which you want to generate Structured Text
code.

» - r“'""--. - a1
r\/ f‘x.; Jﬁ Cut Ctrl+X

Sine Wave i}
Copy Ctrl+C
[Paste Ctrl+v

Comment Through Ctrl+5Shift+Y
Comment Out Ctrl+5hift+X
Delete Del

Connect Blocks

Create Subsystem from Selection Ctrl+G

ij;l

Log Selected Signals

Format r
Rotate & Flip r
Arrange]
Requirernents Traceability r
C/C++ Code r

Optionally, rename Inl and Outl to U and Y respectively. This operation results in a subsystem
like the following figure:

1-4

Prepare Model for Structured Text Generation

u ¥
Gain
1
L L

Save the model with the new subsystem.

In the top-level model, right-click the Subsystem block and select Block Parameters
(Subsystem).

In the resulting block dialog box, select Treat as atomic unit.

Block Parameters: SimpleSubsystem

Subsystem

Select the settings for the subsystem block. To enable parameters for code
generation, select "Treat as atomic unit'.

Main Code Generation
Show port labels | FromPortIcon

Read/Write permissions: ReadWrite

Name of error callback function:

Permit hierarchical resclution: |All
Treat as atomic unit
] Minimize algebraic loop occurrences

sample time (-1 for inherited):

-1

Treat as grouped when propagating variant conditions

\)- Cancel Help Apply

Click OK.

9 Simulate your model.

10 Save your model. In later procedures, you can use either this model, or the
plcdemo simple subsystem model that comes with your software.

You are now ready to:

1-5

1 Getting Started

1-6

* Set up your subsystem to generate Structured Text code. See “Check System Compatibility for
Structured Text Code Generation” on page 1-6.

* Generate Structured Text code for your IDE. See “Generate and Examine Structured Text Code”
on page 1-9.

Check System Compatibility for Structured Text Code Generation

You must already have a model that you have configured to work with the Simulink PLC Coder
software.

In your model, navigate to the subsystem for which you want to generate code.
2 Right-click that Subsystem block and select PLC Code > Check Subsystem Compatibility.

The coder checks whether your model satisfies the Simulink PLC Coder criteria. When the
checking is complete, a View diagnostics hyperlink appears at the bottom of the model window.
Click this hyperlink to open the Diagnostic Viewer window.

Diagnostic Viewer — O Y

E-B-&-%-| ¥~ [4]
plcdemo_simple_subsystem

* PLC Coder Generate Check Subsystem Compatibility @ 1

PLC compatibility check passed for
'plcdemo_simple subsystemy/SimpleSubsystem’

If the subsystem is not atomic, right-click the Subsystem block and select PLC Code, which
prompts Enable “Treat as atomic unit” to generate code.

Prepare Model for Structured Text Generation

Simple:

1s the code generated
To build the subsyste
Code for Subsystem.

¥s hzﬁdinks to the g

Copyright 2000-

Sngreans e run

Requirements Traceability L4
Linear Analysis L4
Design Verifier L4
Coverage L4
Model Advisor L4

Fixed-Point Tool...

Maodel Transformer L4

C/C++ Code 3

HOL Code L4

PLC Code L Enable "Treat as atomic unit” to generate code ..
Polyspace » Navigate to Code

Black Parameters (Subsystem) srated files. I

Properties...

Help

This command opens the block parameter dialog box. Select Treat as atomic unit.

Block Parameters: SimpleSubsystem
Subsystem

Select the settings for the subsystem block. To enable parameters for code
generation, select 'Treat as atomic unit’.

Main Code Generation

Show port labels | FromPortIcon

Read/Write permissions: ReadWrite

MName of error callback function:

pod

[

Permit hierarchical resolution: | All

Treat as atomic unit

Minimize algebraic loop occurrences

Sample time (-1 for inherited):

-1

9

Treat as grouped when propagating variant conditions

Cancel Help

Apply

1-7

1 Getting Started

You are now ready to generate Structured Text code for your IDE. See “Generate and Examine
Structured Text Code” on page 1-9.

1-8

Generate and Examine Structured Text Code

Generate and Examine Structured Text Code

In this section...

“Generate Structured Text from the Model Window” on page 1-9
“Generate Structured Text with the MATLAB Interface” on page 1-10
“View Generated Code” on page 1-11

Generate Structured Text from the Model Window

You must already have set up your environment and Simulink model to use the Simulink PL.C Coder
software to generate Structured Text code. If you have not yet done so, see “Prepare Model for
Structured Text Generation” on page 1-3.

If you do not have the plcdemo simple subsystem model open, open it now.

Open the PLC Coder app. Click PLC Code tab.

Click Settings.

The Configuration Parameters dialog box is displayed.

v

>
L
[
[

&} Configuration Parameters: simple_subsystem/Configuration (Active) — O x
Solver General options

¥ PLC Code Generation

Data Import/Export
Math and Data Types Target IDE: Phoenix Contact PC WORX 6.0 -
Diagnostics +| Show full target list

Hardware Implementation
Maodel Referencing

Simulation Target

Target IDE Path: C:\Program Files\Phoenix Contact\Software Suite 150

Code Output Directory: | ./plcsrc

Code Generation +| Generate testbench for subsystem
Coverage Include testbench diagnestic code
HDL Code Generation

Design Verifier

Target specific options

Comments Generate functions instead of function block
Optimization Emit Datatype worksheet tags

Identifiers - . o dat

Report uppress auto-generated data fypes

0K Cancel Help Apply

4 On the PLC Code Generation pane, select an option from the Target IDE list, for example, 3S
CoDeSys 2.3.

1 Getting Started

The default Target IDE list displays the full set of supported IDEs. To see a reduced subset of the
target IDEs supported by Simulink PL.C Coder, disable the option Show full target list. To
customize this list, use the plccoderpref function.

Click OK.
6 Click Generate PLC Code.

This button:

* Generates Structured Text code (same as the PLC Code > Generate Code for Subsystem
option)

* Stores generated code in model name.exp (for example,
plcdemo simple subsystem.exp)

When code generation is complete, a View diagnostics hyperlink appears at the bottom of the
model window. Click this hyperlink to open the Diagnostic Viewer window.

Diagnostic Viewer — | *

B B &~ | T[4

pledemo_simple_subsystem

il

* PLC Coder Generate Code @ 1

PLC code generation successful for
'plcdemo_simple_subsystem/SimpleSubsystem’.

Generated files:
LAplesrchplodemo simple subsystem.exp

This window has links that you can click to open the associated files. For more information, see
“Files Generated by Simulink PLC Coder” on page 1-14.

Generate Structured Text with the MATLAB Interface

You can generate Structured Text code for a subsystem in the Command Window with the
plcgeneratecode function. You must have already configured the parameters for the model or,
alternatively, you can use the default settings.

For example, to generate code from the SimpleSubsystem subsystem in the
plcdemo simple subsystem model:

1 Openthe plcdemo _simple subsystem model:

plcdemo simple subsystem
2 Open the Configuration Parameters dialog box using the plcopenconfigset function:

plcopenconfigset('plcdemo simple subsystem/SimpleSubsystem')

1-10

Generate and Examine Structured Text Code

Select a target IDE.

Configure the subsystem as described in “Prepare Model for Structured Text Generation” on
page 1-3.

Generate code for the subsystem:

generatedfiles = plcgeneratecode('plcdemo simple subsystem/SimpleSubsystem')

When using plcgeneratecode for code generation, all diagnostic messages are printed to the
MATLAB command window.

View Generated Code

After generating the code, you can view it in the MATLAB Editor. For a description of how the
generated code for the Simulink components map to Structured Text components, see “PLC Code
Generation Basics”. In addition, note the following:

Matrix data types: The coder converts matrix data types to single-dimensional vectors (column-
major) in the generated Structured Text.

Generated code header: If your model has author names, creation dates, and model descriptions,
the generated code contains these items in the header comments. The header also lists
fundamental sample times for the model and the subsystem block for which you generate code.

Code comments: You can choose to propagate block descriptions to comments in generated code.
See “Propagate Block Descriptions to Code Comments” on page 1-13.

The figure illustrates generated code for the CoDeSys Version 2.3 PLC IDE. Generated code for other
platforms, such as Rockwell Automation RSLogix™ 5000, is in XML or other format and looks
different.

e
[T

]
B F O mom -

Mmoo W

B3 OB) BD OB OR) BJOB) ORI ORD LD

w0 m

hbbﬁhbbbb.ﬁwwwmwwwmww
in o = s W b~ O W m=1mo B Wk e o

FUNCTICH BLOCE SimpleSubsystem
VAR_INPUT
gsMethodType: SINT:
U: LREAL:
END_VAR
VAR_OUTPUT
T: LREAL:
END_VAR
VAR
UnitDelay DSTATE: LREAL:
END_VAR
VAR_TEMP
rth_Gain: LEEAL;
END_VAR
CASE ssMethodTypes OF
55 INITIALIZE:
(* InitializeConditions for UnitDelay: '<31>/Unit Delay' *)
UnitDelay DSTATE := 0O;

35_OUTPUT:
(* Gain: '<31>/Gain' incorporates:
* Inport: '<Root=/T'
* o Sum: '<31:/Sum'
* TUnitDelay: '<31>/Unit Delay'
*)

rth_Gain := (U - UnitDslay DSTATE) * 0.5;

(* Outport: '<Foot:/T' *)
T := rth_Gain;

(* Update for UnitDelay: '<31:/Unit Delay' *)
UnitDelay DSTATE := rth_Gain;

END_CASE:
END FUNCTION BLOCE

1-11

1 Getting Started

If you are confident that the generated Structured Text is good, optionally change your workflow to
automatically generate and import code to the target IDE. For more information, see “Import
Structured Text Code Automatically” on page 1-17.

1-12

Propagate Block Descriptions to Code Comments

Propagate Block Descriptions to Code Comments

You can propagate block descriptions from the model to comments in your generated code.

For specific IDEs, you can propagate the block descriptions into specific XML tags in the generated
code. The IDEs use the tags to create a readable description of the function blocks in the IDE.

» For Rockwell Automation RSLogix 5000 AOI/routine target IDEs, the coder propagates block
descriptions from the model into the L5X AdditionalHelpText XML tag. The IDE can then
import the tag as part of AOI and routine definition in the generated code.

* For CoDeSys 3.5 IDE, the coder propagates block descriptions from the model into the
documentation XML tag. When you import the generated code into the CoDeSys 3.5 IDE, the
IDE parses the content of this tag and provides readable descriptions of the function blocks in
your code.

To propagate block descriptions to comments:
1 Enter a description for the block.

a Right-click the block for which you want to write a description and select Properties.
b On the General tab, enter a block description.
2 Before code generation, specify that block descriptions must propagate to code comments.

a Right-click the subsystem for which you are generating code and select PLC Code >
Options.

b Select the option Include block description on page 12-13.

Your block description appears as comments in the generated code.

1-13

1 Getting Started

Files Generated by Simulink PLC Coder

The Simulink PLC Coder software generates Structured Text code and stores it according to the
target IDE platform. These platform-specific paths are default locations for the generated code. To
customize generated file names, see “Specify Custom Names for Generated Files” on page 1-16.

Platform Generated Files

3S-Smart current folder\plcsrc\model name.exp — Structured Text file for importing to the
Software target IDE.

Solutions

CoDeSys 2.3

3S-Smart current folder\plcsrc\model name.xml — Structured Text file for importing to the
Software target IDE.

Solutions

CoDeSys 3.3

3S-Smart current folder\plcsrc\model name.xml — Structured Text file for importing to the
Software target IDE.

Solutions

CoDeSys 3.5

B&R Automation |The following files in current folder\plcsrc\model name — Files for importing to the

Studio® IDE

target IDE:

* Package.pkg — (If test bench is generated) Top-level package file for function blocks
library and test bench main program in XML format.

In the main folder (if test bench is generated):

* TEC.prg — Test bench main program definition file in XML format.

e mainInit.st — Text file. Test bench init program file in Structured Text.

* mainCyclic.st — Text file. Test bench cyclic program file in Structured Text.
* mainExit.st — Text file. Test bench exit program file in Structured Text.

* main.typ — Text file. Main program type definitions file in Structured Text.

* main.var — Text file. Main program variable definitions file in Structured Text.

Beckhoff® current folder\plcsrc\model name.exp — Structured Text file for importing to the
TwinCAT® 2.11 |target IDE.
Beckhoff current folder\plcsrc\model name.xml — Structured Text file for importing to the
TwinCAT 3 target IDE.
KW-Software current folder\plcsrc\model name.xml — Structured Text file, in XML format, for

MULTIPROG® 5.0

importing to the target IDE.

Phoenix Contact®

current folder\plcsrc\model name.xml — Structured Text file, in XML format, for

PC WORX™ 6.0 |importing to the target IDE.
Rockwell current folder\plcsrc\model name.L5X — (If test bench is generated) Structured
Automation Text file for importing to the target IDE using Add-On Instruction (AOI) constructs. This file

Studio 5000 IDE:
AOI

is in XML format and contains the generated Structured Text code for your model.

1-14

Files Generated by Simulink PLC Coder

Platform Generated Files
Rockwell current folder\plcsrc\model name.L5X — (If test bench is generated) Structured
Automation Text file for importing to the target IDE using routine constructs. This file is in XML format

Studio 5000 IDE:
Routine

and contains the generated Structured Text code for your model.

In current folder\plcsrc\model name (if test bench is not generated), the following
files are generated:

o subsystem block name.L5X — Structured Text file in XML format. Contains program
tag and UDT type definitions and the routine code for the top-level subsystem block.

* routine name.L5X — Structured Text files in XML format. Contains routine code for
other subsystem blocks.

Rockwell current folder\plcsrc\model name.L5X — (If test bench is generated) Structured
Automation Text file for importing to the target IDE using Add-On Instruction (AOI) constructs. This file
RSLogix 5000 is in XML format and contains the generated Structured Text code for your model.

IDE: AOI

Rockwell current folder\plcsrc\model name.L5X — (If test bench is generated) Structured
Automation Text file for importing to the target IDE using routine constructs. This file is in XML format
RSLogix 5000 and contains the generated Structured Text code for your model.

IDE: Routine

In current folder\plcsrc\model name (if test bench is not generated), the following
files are generated:

* subsystem block name.L5X — Structured Text file in XML format. Contains program
tag and UDT type definitions and the routine code for the top-level subsystem block.

* routine name.L5X — Structured Text files in XML format. Contains routine code for
other subsystem blocks.

Siemens
SIMATIC® STEP®
7 IDE

current _folder\plcsrc\model name\model name.scl — Structured Text file for
importing to the target IDE.

current folder\plcsrc\model name\model name.asc — (If test bench is generated)
Text file. Structured Text file and symbol table for generated test bench code.

Siemens TIA

current folder\plcsrc\model name\model name.scl — Structured Text file for

Portal IDE importing to the target IDE.

Generic current folder\plcsrc\model name.st — Pure Structured Text file. If your target
IDE is not available for the Simulink PLC Coder product, consider generating and importing
a generic Structured Text file.

PLCopen XML current folder\plcsrc\model name.xml — Structured Text file formatted using the
PLCopen XML standard. If your target IDE is not available for the Simulink PL.C Coder
product, but uses a format like this standard, consider generating and importing a PLCopen
XML Structured Text file.

Rexroth current folder\plcsrc\model name.xml — Structured Text file for importing to the

IndraWorks target IDE.

OMRON Sysmac
Studio

current folder\plcsrc\model name.xml — Structured Text file for importing to the
target IDE.

1-15

1 Getting Started

Specify Custom Names for Generated Files

1-16

The Simulink PLC Coder software generates Structured Text code and stores it according to the
target IDE platform. These platform-specific paths are default locations for the generated code. For
more information, see “Files Generated by Simulink PL.C Coder” on page 1-14.

To specify a different name for the generated files, set the Function name options parameter in the

Subsystem block:

1 Right-click the Subsystem block for which you want to generate code and select Subsystem

Parameters.

In the Main tab, select the Treat as atomic unit check box.

Click the Code Generation tab.

From the Function Packaging parameter list, select Reusable Function.

These options enable the Function name options and File name options parameters.
5 Select the option that you want to use for generating the file name.

Function name options

Generated File Name

Auto

Default. Uses the model name, as listed in
“Prepare Model for Structured Text
Generation” on page 1-3, for example,
plcdemo simple subsystem.

Use subsystem name

Uses the subsystem name, for example,
SimpleSubsystem.

User specified

Uses the custom name that you specify in the
Function name parameter, for example,
SimpleSubsystem.

Import Structured Text Code Automatically

Import Structured Text Code Automatically

In this section...

“PLC IDEs That Qualify for Importing Code Automatically” on page 1-17
“Generate and Automatically Import Structured Text Code” on page 1-17
“Troubleshoot Automatic Import Issues” on page 1-18

PLC IDEs That Qualify for Importing Code Automatically

If you are confident that your model produces Structured Text that does not require visual
examination, you can generate and automatically import Structured Text code to one of the following
target PLC IDEs:

* 3S-Smart Software Solutions CoDeSys Version 2.3
* PHOENIX CONTACT (previously KW) Software MULTIPROG Version 5.0 or 5.50

* Phoenix Contact PC WORX Version 6.0
* Rockwell Automation RSLogix 5000 Version 17, 18, or 19

For the Rockwell Automation RSLogix routine format, you must generate testbench code for
automatic import and verification.

* Siemens SIMATIC STEP 7 Version 5.4 only for the following versions:

* Siemens SIMATIC Manager: Version V5.4+SP5+HF1, Revision K5.4.5.1

* S7-SCL: Version V5.3+SP5, Revision K5.3.5.0

» S7-PLCSIM: Version V5.4+SP3, Revision K5.4.3.0
Working with the default CoDeSys Version 2.3 IDE should require additional changes for only the
PHOENIX CONTACT (previously KW) Software MULTIPROG 5.0/5.50 and Phoenix Contact PC WORX
6.0 IDE. For information about automatically importing Structured Text code to these IDEs, see

“Import and Verify Structured Text to PHOENIX CONTACT (previously KW) Software MULTIPROG
5.0 and Phoenix Contact PC WORX 6.0 IDEs” on page 4-4.

Generate and Automatically Import Structured Text Code

You can generate and automatically import Structured Text code. Before you start:

* In the target IDE, save your current project.
* Close open projects.
* Close the target IDE and target IDE-related windows.

Note While the automatic import process is in progress, do not use your mouse or keyboard. Doing
so might disrupt the process. When the process completes, you can resume normal operations.

You must have already installed your target PLC IDE in a default location, and it must use the
CoDeSys V2.3 IDE. If you installed the target PLC IDE in a nondefault location, open the
Configuration Parameters dialog box. In the PLC Coder node, set the Target IDE Path parameter to
the installation folder of your PLC IDE. See “Target IDE Path” on page 12-6.

1-17

1 Getting Started

1-18

If it is not already started, open the Command Window.

Open the plcdemo _simple subsystem model.

Right-click the Subsystem block and select PLC Code > Generate and Import Code for
Subsystem.

The software:

Generates the code.
Starts the target IDE interface.
Creates a project.

e N T 9

Imports the generated code to the target IDE.

If you want to generate, import, and run the Structured Text code, see “Import and Verify Structured
Text Code” on page 4-4.

Troubleshoot Automatic Import Issues

Following are guidelines, hints, and tips for questions or issues you might have while using the
automatic import capability of the Simulink PL.C Coder product.

Supported Target IDEs

The Simulink PLC Coder software supports only the following versions of target IDEs for automatic

import and verification:

* 3S-Smart Software Solutions CoDeSys Version 2.3

* PHOENIX CONTACT (previously KW) Software MULTIPROG 5.0 or 5.50 (English)

* Phoenix Contact PC WORX 6.0 (English)

* Rockwell Automation RSLogix 5000 Series Version 17, 18, 19 (English)
For the Rockwell Automation RSLogix routine format, you must generate testbench code for
automatic import and verification.

* Siemens SIMATIC STEP 7 Version 5.4 (English and German)

Note Some antivirus softwares falsely identify the executables that implement the automatic import
feature as malware. This can be safely ignored. For more information, see “Issues with Anti-Virus
Software”.

Unsupported Target IDEs

The following target IDEs currently do not support automatic import. For these target IDEs, the
automatic import menu items (Generate and Import Code for Subsystem and Generate, Import,
and Verify Code for Subsystem) are disabled.

* 3S-Smart Software Solutions CoDeSys Version 3.3

* 3S-Smart Software Solutions CoDeSys Version 3.5

* B&R Automation Studio IDE

* Beckhoff TwinCAT 2.11, 3

Import Structured Text Code Automatically

Generic
PLCopen
Rockwell Automation Studio 5000 Logix Designer (both routine and AOI constructs)

Possible Automatic Import Issues

When the Simulink PLC Coder software fails to finish automatically importing for the target IDE, it
reports an issue in a message dialog box. To remedy the issue, try the following actions:

Check that the coder supports the target IDE version and language setting combination.

Check that you have specified the target IDE path in the subsystem Configuration Parameters
dialog box.

Close currently open projects in the target IDE, close the target IDE completely, and try again.

Some target IDEs can have issues supporting the large data sets the coder test bench generates.
In these cases, try to shorten the simulation cycles to reduce the data set size, then try the
automatic import again.

Other applications can interfere with automatic importing to a target IDE. Try to close other
unrelated applications on the system and try the automatic import again.

1-19

1 Getting Started

Using Simulink Test with Simulink PLC Coder

You can use Simulink Test™ with Simulink PLC Coder to author, manage, and execute simulation-
based tests of the generated code.

If you do not have the plcdemo simple subsystem model open, open it now.

Create a signal build test harness for the subsystem as shown. To create a test harness for a
subsystem, select the subsystem, right-click, and from the context menu, select Test Harness>
Create for <subsystem name>. Set test harness properties using the Create Test Harness

dialog box.
Group 1
[— signal1 »lu % @
L
Signal Builder
Signal spec. Signal spec.
and routing and routing

SimpleSubsystem

3 Open the PLC Coder app. Click PLC Code tab.
4 Click Settings. The Configuration Parameters dialog box is displayed.

1-20

Using Simulink Test with Simulink PLC Coder

&4 Configuration Parameters: pledemo_simple_subsystem/Configuration (Active) — O

Q

S
.
>
>

Solver

Data Import/Export
Math and Data Types
Diagnostics

Hardware Implemeantation
Model Referencing
Simulation Target
Code Generation
Coverage

HDL Code Generation
Design Verifier

¥ PLC Code Generation

Comments
Optimization
|dentifiers
Report

General options

Target IDE:
Show full target list
Target IDE Path:

Code Output Directory:

35 CoDeSys 2.3 -

E\share\apps'35-Software\CoDeSys'w2 3

Aplcsrc

Generate testbench for subsystem

[Include testbench diagnostic code

OK Cancel Help

Apply

5 On the PLC Code Generation pane, select a target and enable the Generate testbench for

subsystemoption.

Click OK.

7 Right-click and select Generate code for the subsystem from the Test Harness Window. The
generated code contains multiple test-benches from the signal builder. You can run this code in
the PLC emulator to make sure it matches simulation.

Limitations

» Ifyou use anything other than a signal builder block in the test harness, you must create a top-
level atomic subsystem in the test harness that contains both the subsystem under test and the
testing blocks (for example, say test sequence block) and generate code for this subsystem.

* Simulink PLC Coder does not yet support verify keyword in the test sequence block

* Simulink PLC Coder does support duration keyword in the test sequence block but it requires
the generate code to be run with the same sample rate as in the Simulink model

1-21

1 Getting Started

Simulation and Code Generation of Motion Instructions

The Simulink PLC Coder software supports a workflow for the behavioral simulation and structured
text code generation for the Rockwell Automation RSLogix motion control instructions.

Workflow for Using Motion Instructions in Model

This workflow uses the “Simulating and Generating Structured Text Code for Rockwell Motion
Instructions” on page 24-39 example in the plccoderdemos folder. This example provides a
template that you can use with motion instructions. It contains the following files:

Name Description

MotionControllerExample.slx Simulink model containing an example Stateflow chart for
modeling motion instructions.

DrivelLibrary.slx Simulink library with a Stateflow chart that is used for
modeling a real world drive (axis) with trajectories, delays,
and other parameters.

MotionTypesForSim.mat MAT-file containing the bus data types for the

AXIS SERVO DRIVE and MOTION INSTRUCTION. The
MotioncontrollerExample.slx model loads the content
of the MAT-file into the workspace. If you are creating a new
model you must load this MAT-file for simulation and code
generation.

Trajectory.m MATLAB class file for implementing trapezoidal velocity
profile. This is used to simulate the behavior of the Motion
Axis Move (MAM) command.

MotionApiStubs.slx Supporting file for code generation.

MotionInstructionType.m MATLAB enumeration class file that represents the type of
motion API calls. For example, isMAM, 1isMSF. This file is
used only during simulation.

plc_keyword hook.m Helper file to avoid name mangling and reserved keyword
limitations.
plcgeneratemotionapicode.p Function that transforms the chart in the model to make it

suitable for code generation.

Before you start, copy the files in the example to the current working folder.

Create a Simulink model with a Stateflow chart.

Load the bus data types from the MotionTypesForSim.mat file into the workspace by using the
load function.

3 Create data that represents the drive and motion instructions for the chart. For information on
adding data to Stateflow charts, see “Add Stateflow Data” (Stateflow)

4 Copy the drive(axis) model from the DriveLibrary.slx file into the Stateflow chart. The drive
model must be copied as an atomic subchart.

1-22

Simulation and Code Generation of Motion Instructions

[%a] MotionControlierExample b [Pa| Motioncontroller » T3 chart » T Driver b T3 Drive

\
[isMSO(MI_MSO)] {MI_MSF = mark_done(MI_MSF);}
{MI_MSO = mark_ip(MI_MSO);} ‘

MSO_Wait ’ MSF_Wait ’
[isMSF(MI_MSF)]
{MI_MSO = mark_done(MI_MSO);} {MI_MSF = mark_ip(MI_MSF);}
(On N\
T [isMAM(MI_MAM)]
v {MI_MAM = mark_ip(MI_MAM);} (Moving
Stopped _| en: trajectory = ml.Trajectory(Axis.position, ...
Axis.MAMData.position,...
Axis.MAMData.speed., ...
Axis. MAMData.accelRate, ...
Axis.MAMData.decelRate);
tStart = t;
du:
[Axis.position,Axis.velocity,...
MI_MAM.ACCEL,MI_MAM.DECEL] = ...
[abs(Axis.position-Axis.MAMData.position)<0.01] ml.getPositionAndVelocity(trajectory,(t-tStart));
MI_MAM = mark_done(MI_MAM),
b \
& J

The drive logic Stateflow chart models a real world drive with parameters such as trajectory and
delay. Any drive subchart has the following data:

Name Port Resc DataType Size Initi CompiledType Compilec

Use the Subchart Mappings dialog to map the drive subchart data store memory data with the
local data of the appropriate names in the container chart. For more information, see “Map
Variables for Atomic Subcharts and Boxes” (Stateflow). The “Simulating and Generating
Structured Text Code for Rockwell Motion Instructions” on page 24-39 example has the
following mapping for Drivel.

State Drivel X
General Mappings Logging Documentati‘t*
Description
The following tables list the mappings from the
subchart symbols (on the left) to the symbols in
the main chart (on the right). For every subchart
symbol, the drop-down provides the list of
available symbols which that subchart symbol
can map to.

» Input Mapping

» Output Mapping

» Parameter Mapping

~ Data Store Memory Mapping

\tomic subchart symbc Main chart symbol
MI_MSF MI_MSF1 v

MI MSO MI MSO1 v|v
» INPUT_EVENT Mapping

OK Cancel Help Apply

Use graphical functions to create motion API instructions. For example, for the Motion Servo
On (MSO) instruction:

1-23

1 Getting Started

function [AxisTagOut,MITagOut] = MSO(AxisTag,MITag)

function [AxisTagOut,MITagOut] = MSO(AxisTag,MITag)

{AxisTagOut = AxisTag;

MITagOut = MITag;

AxisTagOut.currentlnstruction = MotionInstructionType.isMSO;
MITagOut.EN = true;

MITagOut.IP = false;

MITagOut.DN = false;}

The mapping between the inputs to the outputs is through "pass by reference".

7 Create the controller logic in another subchart and use the motion instructions created in the
previous step in the chart. Controllerl in the example has the following Stateflow chart.

Controllert

n ety
= MI_MSOT.DN = fase:
A1 MI_MSO1) = MSO(Axis1 MI_MSO1);

Stop
eni

MI_MSF1.DN=false: MI_MAM1.0N]
[Axis1 MI_MSF1] = MSF(Axis1 MI_MSF1);

[MI_MSF1.0N]

Simulation of the Motion APl Model

You can run simulation on the model containing the motion instructions and see the state changes the
controller chart and the Drive subchart. You can also log the local data of the chart such as AXIS
and the MOTION INSTRUCTION variables For more information, see “Configure States and Data for
Logging” (Stateflow).

1-24

Simulation and Code Generation of Motion Instructions

File Edit View Tools Add Help

BO f 80X TE- ®§E4 m+88 B& &
Search: | by Name | Name: | | &4 searcn
Model Hierarchy = Contents of: Mot ntroller/Chart (only) Data Axis
v ’i%ﬂ\;‘aﬂirz:kspm Column View: | Statefiow * | Show Details 2Mobject(s) T EL":'E‘_ toagire Desition
g signal data [_] Test point
v MotionControllerExample Name Scope Port Resolve Signal DataType Size Tnitial N
HRl Model Workspace: ek Lo O ou Logging name:
& configuration (Active) e - ouble Use signal name -
B code for MotionControllerExample accelRate Local = double
(2] simulink Design Verifier results accellnits Local O double fote
() Advice for MotionControllerExample decellerk Local] double Data
MationContraller decelRate Local O double
chart decelUnits Local O double L] timit data points to ast {5000
> [© DriveModel direction Local O double [Decimation 1
> & controlier jerkUnits Local O double
B pummytoger menge Local m] double
foo vt mergeSpeed Local O double
£ MO
fo A position Local O double
profile Local O double
speed Local O double
speedUnits Local O double
pots Local O Bus: AXIS_SERVO_DRIVE
MI_MAM Local O Bus: MOTION_INSTRUCTION
MI_MSO Local O Bus: MOTION_INSTRUCTION
MI_MSF Local O Bus: MOTION_INSTRUCTION
B orivemoder
B contralier
(5 bummyLogger
) MSF
fea Mso
fea Mam
< L4 Revert Help Apply
Contents Search Results

At the end of simulation, the logged signals are captured in the base workspace as a variable called
logsout. This can be imported into Simulation Data Inspector.

1-25

1 Getting Started

4\ Simulation Data Inspector - untitled* - m} *

DATA INSPECTOR

I:D:INEW ilmﬂﬂﬂ £t Preferences z‘_’s & Q | @ - 4 a

T Open @ Export
H save ~ || Report

Q

Inspect

Axis.MAMData.mergeSpeed —

Axis.velocity

v
e ==

MI_MAM.EN
MI_MAM.DMN
MI_MAM.ER
MI_MAM.IP

MI_MAM.PC

v M_MAMACCEL

Deiete (=, [EZ [[x] DataCursors Highight Subpiots Clear Subpiot Legend Saved Views
- - in Model - - - -
FILE | RUNS | ZOOM & PAN | MEASURE & TRACE | VIEWS |

@ W Axis.velocity m MI_MAM.ACCEL

]

Compare

MI_MAM.DECEL
5
MName Axis.position
Line 4
Units
Data Type double 5
Sample Time
Model MotionControllerExa. ..
Block Name Chart :
Block Path MotionControllerExa. ..
Port L I
Dimensions [1]
Channel P —
Run Run 1: Imported_Data
Ouermide Ginhal Taler | nn 0 5 10 15 20 25 30 35 40 45 50 55 60 65 0 5 80 85 20 85 100

1-26

Structured Text Code Generation

Use the plcgeneratemotionapicode function to prepare the model for code generation and
generate structured text code. The plcgeneratemotionapicode takes the full path name of
subsystem containing the original chart as an input and creates a new model from which structured
text code can be generated.

Adding Support for Other Motion Instructions

The plcdemo motion api rockwell example has support for only the following motion
instructions:

* MAM
* MAS
* MSF
+ MSO

To use other Rockwell Automation RSLogix motion instructions in the model (For example, Motion
Axis Jog (MAJ)), you must perform the following steps:

Simulation and Code Generation of Motion Instructions

1 Because the MAJ instruction is similar to MAM instruction, create a bus for MAJ with elements
similar to that of MAM.

T B . gy B S e o gy

s

2 Update the MotionTypesForSim.mat file with the new definitions for MAJDATA and
AXIS SERVO DRIVE.

3 In the Stateflow chart, create a graphical function representing MAJ (similar to MAM). Assign the
appropriate inputs and outputs.

function [AxisTagOut,MITagOut] = MAM(AxisTag,MITag,directionln, positionin, speedIn, speedUnitsIn, ...
accelRateln, accelUnitsIn, ...
decelRateln, decelUnitsIn, ...
profileln, accelJerkin, decelJerkin, jerkUnitsin, ...
mergeln, mergeSpeedin, ...
lockPositionln, lockDirectionln, ...
eventDistanceln, calculatedDataln)

4 Create single transition with commands to set the output values.

1-27

1 Getting Started

accelRateln, accelUnitsIn, ...
decelRateln, decelUnitsin, ...
profileln, accelJerkin, decelJerkin, jerkUnitsin, ...
mergeln, mergeSpeedin, ...
lockPositionin, lockDirectionln, ...
eventDistanceln, calculatedDataln)

function [AxisTagOut,MITagOut] = MAM(AxisTag,MITag.directionln, positionin, speedIn, speedUnitslIn, ...

1-28

{

AxisTagOut = AxisTag;

MITagOut = MITag;

AxisTagOut.currentinstruction = MotionInstructionType.isMAM;
AxisTagOut. MAMData.direction = directionln;
AxisTagOut. MAMData.position = positionin;

AxisTagOut. MAMData.speed = speedin;

AxisTagOut. MAMData.speedUnits = speedUnitsin;
AxisTagOut. MAMData.accelRate = accelRateln;
AxisTagOut. MAMData.accelUnits = accelUnitsin;
AxisTagOut. MAMData.decelRate = decelRateln;
AxisTagOut. MAMData.decelUnits = decelUnitsIn;
AxisTagOut. MAMData.profile = profileln;

AxisTagOut. MAMData.accelJerk = accelJerkin;
AxisTagOut. MAMData.decelJerk = decelJerkin;
AxisTagOut. MAMData.jerkUnits = jerkUnitsIn;
AxisTagOut. MAMData.merge = mergeln;

AxisTagOut. MAMData.mergeSpeed = mergeSpeedin;
AxisTagOut. MAMData.lockPosition = lockPositionin;
AxisTagOut. MAMData.lockDirection = lockDirectionIn;
AxisTagOut. MAMData.eventDistance = eventDistanceln;
AxisTagOut. MAMData.calculatedData = calculatedDataln;
MITagOut.EN = true;

MITagOut.IP = false;

MITagOut.DN = false;

}

Remove the transition commands and copy the graphical function to the MotionApiStubs.

slx.

Simulation and Code Generation

of Motion Instructions

MotionApiStubs

@ Hide/Show Explorer Bar

@ zoom
Fit to View

[state

1O Junction

"y Default transition
[Box

(=) simulink state
¥4 simulink function
[# Graphical function
€ MATLAB function
B Truth table

() History

A3 Annotation

[E] 1mage

[Pl Motionapistubs b T Motionapistubs b

Tunction MSF(Axis Tag, MolioninstructionTag)

Tunction MSO[Axis Tag,MotioninstrucionTag)

function

MAW(AxisTag, MotionlnstructionTag direction, position, speed, speedUnits,

, accelUnits, decelRate, decelUnits, profile, accelJerk, decelJerk, jerkUnits, merge, mergeSpeed,

ockPosition, lockDirection, eventDistance, calculatedData)

6 Update the functionName variable in the getDriveTemplateNames.m file to include MAJ.

1-29

1 Getting Started

B4 Editor - YA1M\amathewi.ladderF B\plcdemo_motion_api_rockwell\getDriveTemplateMames.m

| getDriveTemplateNames.m = | + |
Zi % delete them before ST generation. However, these are reqﬂrt
12 % simulation
13 %
14 % functionNames : names of the motion api function calls.
15 % motion api calls are needed for simulation and also need
16 % appear in the 5T code. However,
17 % a) these should appear as function calls just as
18 % represented in the controller. They should not get
19 % b) the definition should not get generated. So we
20 % to the plc options symbols that are to not to be g
21 %
22 % globalDataNames : names of the motionAPI global data s
23 % which behind hte scenes are used to updated the status o
24 % instruction calls both in the controller and the drive.
25 % data store memories in the stateflow chart. The type
26 % definition for these should not be generated in the ST a
27 % will be provided by RSLogix. So we add these to the plc
28 - % symbols that are to not to be generated.
29
30 driveNames = {'Drivel', 'Drive2', 'DriveModel'};
31 dummvStateNames = ['Dummviocgoger'};
32 functionNames = {"M3SF', 'M3S0', 'M&M'};
33 globalDataNames = { AXTS SERVO DRIVE", "MOTION INSTRUCTICN', 'l
34
35 -end W

1-30

7 Update the DrivelLibrary.s1x file to respond to MAJ calls during simulation.

* Create 1sMAJ graphical function (similar to i SMAM).

Simulation and Code Generation of Motion Instructions

DriveModel

@ ride/show Explorer Bar

@& zoom

E3 Fit to view

O state

O Junction

" Default transition
O eox

(=) simulink state
& simulink function
Graphical function
€\ MATLAB function
8 Truth table

() History

["3] Annotation

(A2 1mage

[*a] oriveLibrary b G DriveModel b

_

Tunclion yes = isMSO(MI)

I} ea= s Typo.sS0))
Tunclion yes = isMSF(MI)
g fyos= s Type.sMSF)
Tunction yes = isMAM{MI)
Type.isMAM)}

g tres = At A

Tanction WIOut = marke_ip(Mi)

{

MIOut = M
MIOut EN=false;
MIOutER = false;
MIOUt DN = false;
MIOULIP = trug;

}

Tunclion MIOuL = mark_done(M1)

{

MIOut = M
MIOULEN=false;
MIOULER = false
MIQULDN = frue;

MIOULIP = faise
}

Fanction yes =

g o5 = (MLEN &4 WLDNj)

Update the Drive subchart to respond to MAJ by implementing required transitions etc
(similar to MAM as shown).

1-31

1 Getting Started

Off

i

[isMSO(MI_MSO)] {MI_MSF = mark_done(MI_MSF);}
{MI_MSO = mark_ip(M_MSO)}

MSF_Wait
[isMSF(MI_MSF)]
{MI_MSO = mark_done(MI_MSO);} {MI_MSF = mark_ip(MI_MSF);}
(On
[isMAM(MI_MAM)]
{MI_MAM = mark_ip(MI_MAM);} fMoving
Stopped en: trajectory = ml.Traject i iti
: trajectory = ml.Trajectory(Axis.position,...
Axis.MAMData.position,...
Axis.MAMData.speed,...
Axis.MAMData.accelRate, ...
Axis.MAMData.decelRate);
tStart = t;
du:
[Axis.position,Axis.velocity, ...
MI_MAM.ACCEL ,MI_MAM.DECEL] = ...
[abs(Axis.position-Axis.MAMData.position)<0.01] ml'geiBostionAndvelocity(trajectory,(EtStart):
{
MI_MAM = mark_done(MI_MAM);
: \
L

8 Create or update the controller logic as required. Create a new state and add MAJ instruction to
it (similar to the MAM)

1-32

Simulation and Code Generation of Motion Instructions

MotionControllerExample P

MotionController %Chart ¥ 5 Controller

troller1

Start
Begin (i
MI_MSO1.DN = false;
J [Axis1,MI_MSO1] = MSO(Axis1,MI_MSO1);
[MI_MSO1.0N)
N

Stop
entry:
MI_MSF1.DN=false; ma_thant ong
[AxisTMI_MSF1] = MSF(Axis1 MI_MSF1);

mergeSpeed=0;

lockPosition:

lockDirection

eventDistance

[MI_MSF1.DN] calculatedData=0;

MI_MAM1 DN = false;

[Axis1 MI_MAM1] = MANM(Axis1,MI_MAM1,direction, ..
pasition, speed, speadUnits, accelRate,
accelUnits, decelRate, decelUnits,...
profile, accelJerk, decelJerk, .

Done jerkUnits, merge, mergeSpeed, ...
lockPosition,lockDirection,
eventDistance, calculatedData);
L. A/

9 Perform simulation and generate code using the steps described earlier.

1-33

Mapping Simulink Semantics to
Structured Text

* “Generated Code Structure for Simple Simulink Subsystems” on page 2-2
* “Generated Code Structure for Reusable Subsystems” on page 2-4

* “Generated Code Structure for Triggered Subsystems” on page 2-6

* “Generated Code Structure for Stateflow Charts” on page 2-8

* “Generated Code Structure for MATLAB Function Block” on page 2-12

* “Generated Code Structure for Multirate Models” on page 2-14

* “Generated Code Structure for Subsystem Mask Parameters” on page 2-16
* “Global Tunable Parameter Initialization for PC WORX” on page 2-20

* “Considerations for Nonintrinsic Math Functions” on page 2-21

2 Mapping Simulink Semantics to Structured Text

Generated Code Structure for Simple Simulink Subsystems

2-2

This topic assumes that you have generated Structured Text code from a Simulink model. If you have
not yet done so, see “Generate Structured Text from the Model Window” on page 1-9.

The example in this topic shows generated code for the CoDeSys Version 2.3 IDE. Generated code for
other IDE platforms looks different.

1 [fyou do not have the plcdemo simple subsystem.exp file open, open it in the MATLAB
editor. In the folder that contains the file, type:

edit plcdemo_simple subsystem.exp
A file like the following is displayed.
The following figure illustrates the mapping of the generated code to Structured Text

components for a simple Simulink subsystem. The Simulink subsystem corresponds to the
Structured Text function block, Subsystem.

Note The coder maps alias data types to the base data type in the generated code.

Input parameter for Atomic subsystem name Subsystem
subsystemn method

type

BLOCE Jimplelubaystem

Subsystem
inputs and R
'DthletS "—'—-—-_..?__ . :.:"..R:I'.-.. J

SUbS‘j’Et‘Em k1 UnitDwlay DSTATE: EA
State (DWork) = =13
variables 28 Teek Gais: LEEAL:

30 CRSE saMethodType OF

31 853 _INITIALITE:

-

3 [InitimliseConditions for UsitDelay: '«<51»/0Onit Delayt =)

UnitDelay DSTATE o= Or
55 =TC
1]::. : o))

Initialize and ¢ R i Detayt o
step methods i eeb_Oaim t= (0 - DmicDelay DSTRTE}] = 0.5:

43 [Ouepazr: 'JRasty»fYr =
4 ¥ p= rzh_Gains

45

&6 i* Opdate for OnitDelay
&T

UnitDelay DSTATE := b Gaing

Inlined
parameters

2 Inspect this code as you ordinarily do for PLC code. Check the generated code.

Note The Simulink model for plcdemo simple subsystem does not contain signal names at the
input or output of the SimpleSubsystem block. So the generated code has the port names U and Y

Generated Code Structure for Simple Simulink Subsystems

as the input and output variable names of the FUNCTION BLOCK. However, even if your model does
contain signal names, coder only uses port names in the generated code.

2-3

2 Mapping Simulink Semantics to Structured Text

Generated Code Structure for Reusable Subsystems

This topic assumes that you have generated Structured Text code from a Simulink model. If you have
not yet done so, see “Generate Structured Text from the Model Window” on page 1-9.

The example in this topic shows generated code for the CoDeSys Version 2.3 IDE. Generated code for
other IDE platforms looks different.

Open the plcdemo reusable subsystem model.
Open the PLC Coder app.
Click Generate PLC Code.

The Simulink PLC Coder software generates Structured Text code and places it in
current folder/plcsrc/plcdemo reusable subsystem.exp.

4 If you do not have the plcdemo reusable subsystem.exp file open, open it in the MATLAB
editor.

The following figure illustrates the mapping of the generated code to Structured Text
components for a reusable Simulink subsystem. This graphic contains a copy of the hierarchical
subsystem, ReusableSubsystem. This subsystem contains two identical subsystems, S1 and S2.
This configuration enables code reuse between the two instances (look for the
ReusableSubsystem string in the code).

CO——f —|
[kL
1
ASE sbwthodl
=5 THI
i nicialize Por Arcmis Subfystam: “<S13/51°% #
40 51 [ssMermsdType = 55 THITIALIZE, O == Uij:
o
" S
{* Erd &Y SyseemTnicislivs far Sukdyseem: ‘c81n/81¢ »
{* SyscemTnicislire for Acomis SubSyscem: *cS1w/52° =
= 11 81 [saMechodIype 1= 535 INITIALIZE, O r= O2)y
3

{* Erd of Syscemlnicialize for SubSyscem) "<S51»/52° +

utpats for Atomio SubSyscems °"<513/51° =)

10_511 §
i1 511 5 10_51 [saMathodIype 1= 55_CUTEUT, U &= Ul}s
v T1 1= 10_51.¥s
I* End of Sutpute for Subiyscem: "<51x/51' *)
|* Outpats for Atomic SubSystem: “<S13/53° =)
Ins‘tﬂnm Vanables / et =|:-|=- t= 285 _OUTPUT, O = Ud):
Instance invocations (call sites) . .

Reused code in - -
FUNCTION_BLOCK asMezhedType: SINT;
Ot LEEALS
i nm

n_'G.-_F_

¥1 LEEALr

END VAR

2-4

matlab:plcdemo_reusable_subsystem

Generated Code Structure for Reusable Subsystems

Examine the generated Structured Text code. The code defines FUNCTION BLOCK S1 once.

Look for two instance variables that correspond to the two instances declared inside the parent
FUNCTION BLOCK ReusableSubsystem (i® S1: Sl and il S1: S1). The code invokes these
two instances separately by passing in different inputs. The code invokes the outputs per the
Simulink execution semantics.

For IEC 61131-3 compatible targets, the non-step and the output ssMethodType do not use the
output variables of the FUNCTION BLOCK. Therefore, the generated Structured Text code for
SS INITIALIZE does not contain assignment statements for the outputs Y1 and Y2.

Note This optimization is applicable only to IEC 61131-3 compatible targets.

2-5

2 Mapping Simulink Semantics to Structured Text

Generated Code Structure for Triggered Subsystems

2-6

This topic assumes that you have generated Structured Text code from a Simulink model. If you have
not yet done so, see “Generate Structured Text from the Model Window” on page 1-9.

The example in this topic shows generated code for the CoDeSys Version 2.3 PLC IDE. Generated
code for other IDE platforms looks different.

Open the plcdemo cruise control model.

Open the PLC Coder app. Click the PLC Code tab.
Click Generate PLC Code.

The Simulink PLC Coder software generates Structured Text code and places it in
current folder/plcsrc/plcdemo cruise control.exp.

4 Ifyou do not have the plcdemo cruise control.exp file open, open it in the MATLAB editor.

The following figure illustrates the mapping of the generated code to Structured Text
components for a triggered Simulink subsystem. The first part of the figure shows the Controller
subsystem and the triggered Stateflow chart that it contains. The second part of the figure shows
excerpts of the generated code. Notice the zero-crossing functions that implement the triggered
subsystem semantics.

Subsystem Triggered Stateflow Chart
¥

fincrement / 51

| lecremant pwr :
Target Speed active

S B

#|iesume brake ﬁ]

| Power

perake ratio target_speed
Throt_cmd (%) curr_speed

Pl

leurr_ --‘-‘-"L_ -

e Enable / Setpoint

Controller

matlab:plcdemo_cruise_control

Generated Code Structure for Triggered Subsystems

Generated code

EnableSetpoint_Trig ICE: ARRAY [0..8] OF USINT = 3,3,3.3,%.3.3:
i0_ICFOH_d RHY: ICFCH d RANY:
END_VRR

88_STEP:

{* DiscreteFulseBensractor: "<51»/Fulse Generacor' #)

IF (clockTickCounter € 1) AND (clockTickCounter »= 0) THEN
templ = 1.0;

EL3SE
templ = Q.07

END_IF:

rth_PulseGenerator := templs

IF clockTickTounter »= 1 THEW
eloskTickCouncar = 0F

ELSE

glockTickCounter 1= clockTickCounter + 17
END_IF:
1* End of DiscretePulseGenerator: "<31>/Pulae Genezator" *)

{* Charc: "«S13/Enahle f/ Setpoint ' incorporaces:
TriggerPort: "<52»/ input events ' #)
cempinputSignal (0] := rtb_PulseGensrator: . .
1* Impest: '<Roct>/Incoement’ *) Tngwrﬂj SUbsttem SE!r‘I"IEIrItIGS
cemplepurSignal (1] := Incremenc:
cempInputSignal[2] = Inoremenc)
I* Inport: '<Rooth>/Decrement® <)
cempinputSignal (3] := Decremsnt:
caspIrputIignal (4] = Dacresant:
I* Import: '<Roocx/Sec' *)
cempInputSignal[5] = Sexr
I* Inport: ‘<Root>/Resume" *)
cempinputSignal (€] := Hesume:
|* Charc: *<91>/Enable f/ SeTROINT * iNCOrporat
* TriggerPort: "<51»/ ipput events ' #)
FOR irputEventindex = O TO 6 DO
i0_ZCFCH_d _ANY (a0 = EnableSetpoint_Pfig_2CE [inputEventIndex],
callCharcStep := i0_ICFCH _d RNY.y
Ep :w 10_ICFCH_d_RNY.yl:
tempOucEvent [inpucEventIndex)# s = callCharcScepy
outStace [inputEventIndex] TRy

2-7

2 Mapping Simulink Semantics to Structured Text

Generated Code Structure for Stateflow Charts

The examples in this topic show generated code for the CoDeSys Version 2.3 PLC IDE. Generated
code for other IDE platforms looks different.

Stateflow Chart with Event Based Transitions

Generate code for the Stateflow chart ControlModule in the model
plcdemo stateflow controller. Here is the chart:

/M ain

|dle
out = sIDLE;
start_driv e();

start_d

rive();

Held
out=sHELL;
start_driv ef);

Lcmd::cHOLDj
! f
[lis_faul()] Restarting /
_ |out=sRESTARTING] /[cmd==cRESTART]
2| start_drive(); o ’
- J
1 - -
Resefting ! T
out=sRESETTING; |, aRer20icl -
reset_drive(); T | [cmd==cSTOP || is_fautt()] [cmd==cSTOP}
T !
[cmd==cRESET] |Complete Stopping
(= ~|out=sCOMPLETH out=sSTOPPING; | icmd==cABORT] |out=sABORTIN
1) STEII'I_-:.' r|'-.-"3(}; sto p_.j riv '3(}. 1 L= St':lp_'j r‘r\"el:};
i lis_acive(] llis_active()]
Stopped Aborted
out=sSTOPPED out=sABORTEL;
stop_drive(); stop_drive();
[cmd==cRESET] | [cmd==cRESET]
= { = {
- L L
function function function start_drive function stop_drive function reset_drive

result = is_fault

result =is_active

matlab:plcdemo_stateflow_controller

Generated Code Structure for Stateflow Charts

You can map the states and transitions in the chart to the generated code. For instance, the transition
from the state Aborting to Aborted appears in the generated code as:

ControlModule IN Aborting:

rtb_out := sABORTING;

(* During 'Aborting': '<S1>:11"' *)

(* Graphical Function 'is active': '<S1>:73' *)

(* Transition: '<S1>:75' *)

IF NOT drive state.Active THEN
(* Transition: '<S1>:31' *)
is_c2 ControlModule := ControlModule IN Aborted;
(* Entry 'Aborted': '<S1>:12' *)
rtb _out := sABORTED;
(* Graphical Function 'stop drive': '<S1>:88' *)
(* Transition: '<S1>:90' *)
driveOut.Start := FALSE;
driveOut.Stop := TRUE;
driveOut.Reset := FALSE;

END IF;

For more information on the inlining of functions such as start drive, stop drive, and
reset drive in the generated code, see “Control Code Partitions for MATLAB Functions in

Stateflow Charts” on page 7-8.

Stateflow Chart with Absolute Time Temporal Logic

Generate code for the Stateflow chart Temporal in the model plcdemo sf abs time. Here is the
chart:

2-9

matlab:plcdemo_stateflow_controller

2 Mapping Simulink Semantics to Structured Text

{pulse =0}
.) ,
: =1- after(3, sec
du: pulse = 1; i [after(o du: pulse = 2:
N v T
[after(4, sec)]
D C
du: pulse = 4; [before(2, sec) && (In1 == 1)] | du: pulse = 3;

You can map states and transitions in the chart to the generated code. For instance, the transition

from state B to C appears as:
Temporal IN B:
(* During 'B': '<S1>:2' *)
temporalCounter_il(timerAction := 2, maxTime := 4000);
IF temporalCounter il.done THEN
(* Transition: '<S1>:8' *)
is_c2 Temporal := Temporal IN C;
temporalCounter_il(timerAction := 1, maxTime := 0);
ELSE
(* Outport: '<Root>/pulse' *)
pulse := 2.0;
END IF;

The variable temporalCounter il is an instance of the function block PLC_ CODER TIMER defined
as:

FUNCTION BLOCK PLC CODER TIMER
VAR _INPUT
timerAction: INT;
maxTime: DINT;
END VAR
VAR OUTPUT
done: BOOL;
END VAR
VAR
plcTimer: TON;
plcTimerExpired: BOOL;

2-10

Generated Code Structure for Stateflow Charts

END VAR
CASE timerAction OF
1:
(* RESET *)
plcTimer (IN:=FALSE, PT:=T#0ms);
plcTimerExpired := FALSE;
done := FALSE;
2:
(* AFTER *)
IF (NOT(plcTimerExpired)) THEN
plcTimer (IN:=TRUE, PT:=DINT TO TIME(maxTime));
END IF;
plcTimerExpired := plcTimer.Q;
done := plcTimerExpired;
3:
(* BEFORE *)
IF (NOT(plcTimerExpired)) THEN
plcTimer (IN:=TRUE, PT:=DINT TO TIME(maxTime));
END IF;
plcTimerExpired := plcTimer.Q;
done := NOT(plcTimerExpired);
END CASE;

END FUNCTION BLOCK

2-11

2 Mapping Simulink Semantics to Structured Text

Generated Code Structure for MATLAB Function Block

2-12

This topic assumes that you have generated Structured Text code from a Simulink model. If you have
not yet done so, see “Generate Structured Text from the Model Window” on page 1-9.

The example in this topic shows generated code for the CoDeSys Version 2.3 IDE. Generated code for
other IDE platforms looks different.

Open the plcdemo _eml tankcontrol model.

Open the PLC Coder app. Click the PLC Code tab.
Click Generate PLC Code.

The Simulink PLC Coder software generates Structured Text code and places it in
current folder/plcsrc/plcdemo_eml tankcontrol.exp.

4 Ifyou do not have the plcdemo _eml tankcontrol.exp file open, open it in the MATLAB
editor.

The following figure illustrates the mapping of the generated code to Structured Text
components for a Simulink Subsystem block that contains a MATLAB Function block. The coder
tries to perform inline optimization on the generated code for MATLAB local functions. If the
coder determines that it is more efficient to leave the local function as is, it places the generated
code in a Structured Text construct called FUNCTION.

5 Examine the generated Structured Text code.

matlab:plcdemo_eml_tankcontrol

Generated Code Structure for MATLAB Function Block

funocion [InFlow, CucFlow, StirSpeed] = TankControl (Cr
yieml
& Check ¢ vassal FCATE FCTION BLOCE TanmConsIol
if (Height »= FullHeight) AR _INFUT
4 Ta ir Eail o Command) FLCCommandiTatel
d R ERRE Beighti LBEALI
wvessel = PLCVesselStace.FULL: END VAR
elasif (Height <= EmptyHeight) VAR _CUTFOT
% Is it emgoy ? InFlowi LBEALI
wessel = PLOVesselirtace.EMPTIED: CutFlown LREALI
1 Stirdpesd) LREALY
sras END_AR
vessel = FLOCVesselStace.WOT FULL; AR
=nd D VAR
VAR_TEME

wessell FLCVesseldtacer
EmpryValve) FLCValvedzaced
FillValwe) FLCValvedsacel
END_VAR
I Checl The vessel azase =)
IF Beight »= 10.0 THEW
™ Is it full 7 =)
wessel 1= FLL
ELSTF Beight <= 2.0 THEW
" Is it empry T =)
wessel 1= EMFTIED.
ELSE
wesael 1= HBGT_FULLI
ESD_IF;
™ Process The command mode =)
CAEE Command CF
FILL)
{* Fill Tank =)
Emprty¥alve |= 3HUTI
IF weassl = FULL THEW
FillValwe = SHIUT)

MATLAE code

E13E
FillValwe = GFEH)
EBT_IF)
BCLi

i* Hold Contenta =)

Empryialve 1= SHUT)
&rErEtEd m‘k FillValwe 1= SHUT.
for MATLAB EMFTYI
subfunctions I Emgry Tank *)

FillValwe = JHUT)
IF wessel = EMFTIED THEW
EmpryValwe 1= SHIUT)
E13E
EmptyValwe 1= GFEH)
END_IF)
ELSE
EmpryValwe 1= JHUT)
FillValwe = FHUT)
END_CASE;
i* oompute inflow and ousflow *)

2-13

2 Mapping Simulink Semantics to Structured Text

Generated Code Structure for Multirate Models

2-14

This example assumes that you have generated Structured Text code from a Simulink model. If you
have not yet done so, see “Generate Structured Text from the Model Window” on page 1-9.

The example in this topic shows generated code for the CoDeSys Version 2.3 IDE. Generated code for
other IDE platforms looks different.

Open the plcdemo _multirate model. This model has two sample rates.
Open the PLC Coder app. Click the PLC Code tab.
Click Generate PLC Code.

The Simulink PLC Coder software generates Structured Text code and places it in
current_folder/plcsrc/plcdemo multirate.exp.

4 Ifyou do not have the plcdemo multirate.exp file open, open it in the MATLAB editor and
examine the Structured Text code.

The generated code contains a global time step counter variable:

VAR GLOBAL
plc _ts counterl: DINT;
END VAR

In this example, there are two rates, and the fast rate is twice as fast as the slow rate, so the time
step counter counts to 1, then resets:

IF plc_ts counterl >= 1 THEN

plc_ts counterl := 0;
ELSE

plc ts counterl := plc ts counterl + 1;
END IF;

The generated code for blocks running at slower rates executes conditionally based on the
corresponding time step counter values. In this example, the generated code for Gainl, Unit
Delayl, and Suml executes every other time step, when plc_ts counterl = 0, because those
blocks run at the slow rate. The generated code for Gain, Unit Delay, Sum, and Sum2 executes
every time step because those blocks run at the fast rate.

SS_STEP:

(* Gain: '<S1>/Gain' incorporates:

* TInport: '<Root>/U1'

* Sum: '<S1>/Sum'

* UnitDelay: '<S1>/Unit Delay' *)

rtb Gain := (Ul - UnitDelay DSTATE) * 0.5;

(* Outport: '<Root>/Y1l' *)
Y1 := rtb _Gain;
IF plc_ts counterl = 0 THEN

(* UnitDelay: '<S1>/Unit Delayl' *)
UnitDelayl := UnitDelayl DSTATE;

(* Gain: '<S1>/Gainl' incorporates:
* Inport: '<Root>/U2'

matlab:plcdemo_multirate

Generated Code Structure for Multirate Models

* Sum: '<S1>/Suml' *)
rtb Gainl := (U2 - UnitDelayl) * 0.5;

(* Outport: '<Root>/Y2' *)
Y2 := rtb _Gainl;
END IF;

(* Outport: '<Root>/Y3' incorporates:
* Sum: '<S1>/Sum2’

* UnitDelay: '<S1>/Unit Delay' *)
Y3 := UnitDelay DSTATE - UnitDelayl;

(* Update for UnitDelay: '<S1>/Unit Delay' *)
UnitDelay DSTATE := rtb Gain;

IF plc_ts counterl = 0 THEN

(* Update for UnitDelay: '<S1>/Unit Delayl' *)
UnitDelayl DSTATE := rtb Gainl;

END_IF;

In general, for a subsystem with n different sample times, the generated code has n-1 time step
counter variables, corresponding to the n-1 slower rates. Code generated from parts of the model
running at the slower rates executes conditionally, based on the corresponding time step counter
values.

2-15

2 Mapping Simulink Semantics to Structured Text

Generated Code Structure for Subsystem Mask Parameters

In the generated code for masked subsystems, the mask parameters map to function block inputs.

The values you specify in the subsystem mask are assigned to these function block inputs in the
generated code.

For example, the following subsystem, Subsystem, contains two instances, Filt1l and Filt2, of the
same masked subsystem.

|¥&m_masked_params #

l'n'h double
bookean
Sine Wave | B/= (1)
doubl Qut1
]
L—— % In1
double
= In2 Ot
In3
— Ind
ﬁ double double

In& Dtz
bookean |
false InG
—double ’_' Qut2
]

Sine Wawe 1

2-16

Generated Code Structure for Subsystem Mask Parameters

@m_maskﬂdjarams b |Pa|Subsystem

1 3} - Input
T
2 = [nitF Cut
In2
(3) P | Rty
In3
(4 } - Input
It
g = [nitF Cut
In&
[B ;'! P | pity
InG

Out1

The two subsystems, Filtl, and Filt2, have different values assigned to their mask parameters. In
this example, Filtl Order Thau is a constant with a value of 5.

i

{mask) (link)

Parameters

Filtl_Order _Enable

Function Block Parameters: Filtl

[l

Filtl_Order_Enable

Filtl_COrder_Thau

Initialvalue

]

Filtl_Order_Thau + 3

ok H Cancel H Help

Apply

-

2-17

2 Mapping Simulink Semantics to Structured Text

2-18

-

Function Elock Parameters: Filt2 @
{mask) (link)

Parameters

Filtl_Order _Enable

Filtl_Order_Enab Ie|

Filtl_Order_Thau
Filtl_Order_Thau

Thitialvalue

4

ok]| Cancel || Help applhy

Therefore, for the Filt1 subsystem, the Filt1l Order Thau parameter has a value of 8, and for the
Filt2 subsystem, the Filtl Order Thau parameter has a value of 5.

The following generated code shows the Filt1 function block inputs. The rtp Filtl Order Thau
input was generated for the Filtl Order Thau mask parameter.

FUNCTION BLOCK Filtl
VAR _INPUT
ssMethodType: SINT;
InitV: LREAL;
InitF: BOOL;
Input: LREAL;
rtp Filtl Order Thau: LREAL;
rtp_InitialValue: LREAL;
rtp Filtl Order Enable: BOOL;
END VAR

The following generated code is from the FUNCTION BLOCK Subsystem. The function block assigns a
value of 8 to the rtp Filtl Order Thau input for the 10 Filt1l instance, and assigns a value of 5
tothe rtp Filtl Order Thau input for the i1 Filt1l instance.

SS INITIALIZE:
(* InitializeConditions for Atomic SubSystem: '<S1>/Filtl' *)

i®@ Filtl(ssMethodType := SS INITIALIZE, InitV := In3,
InitF := In2, Input := Inl,
rtp Filtl Order Thau := 8.0,
rtp InitialValue := 0.0,
rtp Filtl Order Enable := TRUE);
Outl := i0 Filtl.Out;

(* End of InitializeConditions for SubSystem: '<S1>/Filtl' *)

Generated Code Structure for Subsystem Mask Parameters

SS_STEP:

(* InitializeConditions for Atomic SubSystem: '<S1>/Filt2' *)
il Filtl(ssMethodType := SS INITIALIZE, InitV := In6,

InitF := In5, Input := In4,

rtp Filtl Order Thau := 5.0,

rtp InitialValue := 4.0,

rtp Filtl Order Enable := TRUE);
OQut2 := il Filtl.Out;

(* End of InitializeConditions for SubSystem: '<S1>/Filt2' *)
(* Outputs for Atomic SubSystem: '<S1>/Filtl' *)

i0 Filtl(ssMethodType := SS OUTPUT, InitV := In3, InitF := In2,
Input := Inl, rtp Filtl Order Thau := 8.0,
rtp InitialValue := 0.0,
rtp Filtl Order Enable := TRUE);

Outl := i0 Filtl.Out;

(* End of Outputs for SubSystem: '<S1>/Filtl' *)

(* Outputs for Atomic SubSystem: '<S1>/Filt2' *)

il Filtl(ssMethodType := SS OUTPUT, InitV := In6, InitF :
Input := In4, rtp Filtl Order Thau := 5.0,
rtp InitialValue := 4.0,
rtp Filtl Order Enable := TRUE);

Out2 := il Filtl.Out;

In5,

(* End of Outputs for SubSystem: '<S1>/Filt2' *)

2-19

2 Mapping Simulink Semantics to Structured Text

Global Tunable Parameter Initialization for PC WORX

2-20

For PC WORX, the coder generates an initialization function, PLC_INIT PARAMETERS, to initialize
global tunable parameters that are arrays and structures. This initialization function is called in the
top-level initialization method.

For example, suppose that your model has a global array variable, ParArrayXLUT:
ParArrayXLUT=[0,2,6,10];

In the generated code, the PLC_INIT PARAMETERS function contains the following code to initialize
ParArrayXLUT:

(* parameter initialization function starts *)

ParArrayXLUT[O] := LREAL#0.0;

ParArrayXLUT[1] := LREAL#2.0;

ParArrayXLUT[2] := LREAL#6.0;

ParArrayXLUT[3] := LREAL#10.0;

(* parameter initialization function ends *)
</div></html>

The PLC_INIT PARAMETERS function is renamed i® PLC INIT PARAMETERS, and called in the top-
level initialization method:

CASE SINT TO INT(ssMethodType) OF

0:

i®@ PLC INIT PARAMETERS();

Considerations for Nonintrinsic Math Functions

Considerations for Nonintrinsic Math Functions

When Simulink PLC Coder encounters a math function that is not intrinsic, it generates Structured
Text by replacing the non-intrinsic function with an equivalent IEC-61131 compatible intrinsic
function. For such cases, an input value that is larger than the allowed input range, causes overflow
and generates a NaN value.

For example, hyperbolic tan is not an intrinsic function. Simulink PLC Coder uses exp in the
generated code to represent tanh. More specifically, it uses (exp(2*x)-1)/(exp(2*x)+1). For large
values of x, this function overflows. The issue can be addressed by adding validation code or using
blocks before calling the tanh function to check that the range of the input is within acceptable
values. In MATLAB, tanh(x) for x>19 is 1.0000. So if x>19, return a value of 1.0000.

See Also

2-21

Generating Ladder Diagram

“Simulink PLC Coder Ladder Diagram Code Generation” on page 3-2

“Prepare Chart for Simulink PLC Coder Ladder Diagram Code Generation” on page 3-6
“Generate Simulink PLC Coder Ladder Diagram Code from Stateflow Chart” on page 3-9
“Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram” on page 3-14
“Restrictions on Stateflow Chart for Ladder Diagram Generation” on page 3-18
“Supported Features in Ladder Diagram” on page 3-20

“Import L5X Ladder Files into Simulink” on page 3-22

“Modeling and Simulation of Ladder Diagrams in Simulink” on page 3-27

“Generating Ladder Diagram Code from Simulink” on page 3-34

“Generating C Code from Simulink Ladder” on page 3-36

“Verify Generated Ladder Diagram Code” on page 3-38

“Simulink PLC Coder Workflow vs. Rockwell Automation RSLogix IDE Workflow” on page 3-42
“Create Custom Instruction in PLC Ladder Diagram Models” on page 3-44

3 Generating Ladder Diagram

Simulink PLC Coder Ladder Diagram Code Generation

3-2

Note Ladder diagram generation from Stateflow charts will be removed in a future release. To
generate ladder diagrams, use Simulink models instead. To create Simulink models compatible with
ladder logic generation, do one of the following:

* Use the blocks from the PLC Ladder library to create a model that is compatible with ladder
diagram generation. To open the PLC Ladder library, type plcladderlib at the MATLAB
command prompt.

* Import ladder logic from a L5X file with the plcimportladder function.

To generate ladder logic from the Simulink models, use these functions: plcgeneratecode and
plcgeneraterunnertb

Ladder Diagram (LD) is a graphical programming language used to develop software for
programmable logic controllers (PLCs). It is one of the languages that the IEC 61131 Standard
specifies for use with PLCs.

A program in Ladder Diagram notation is a circuit diagram that emulates circuits of relay logic
hardware. The underlying program uses Boolean expressions that translate readily to switches and
relays. When you program complex applications directly in Ladder Diagram notation, it is challenging
because you must write the programs with only Boolean variables and expressions.

Using Simulink PLC Coder, you can generate Ladder Diagram code for your applications from a
Stateflow chart (Stateflow). The benefits are:

* You can design your application by using states and transitions in a Stateflow chart. Once you
complete the design, you can generate Ladder Diagram code in XML or another format. You then
import the generated code to an IDE such as CODESYS 3.5 or RSLogix AOI 5000 and view the
Ladder Diagram.

* When you test your Stateflow chart by using a set of inputs, you can reuse these inputs to create a
test bench for the Ladder Diagram code. You import the test bench to your PLC IDE and compare
the results of simulation with the results of running the Ladder Diagram. If the results agree, the
original Stateflow chart is equivalent to the generated Ladder Diagram code.

The figure shows a simple Stateflow chart with three states and two transitions. Based on the
transition conditions, the chart transitions from one state to another.

Simulink PLC Coder Ladder Diagram Code Generation

State1 ‘ State?

[transitionCondition1]

1

[transitionCondition2]

State3 1

The state Statel is active as long transitionConditionl and transitionCondition2 are not
true. This means, Statel is active in one of these two cases:

* The chart has started execution through the default transition.

* The previous active state is also Statel and the
conditions transitionConditionl and transitionCondition?2 are false.

State3 is active in one of these two cases:

» The previous active state is Statel, transitionConditionl is false, and
transitionCondition2 is true.

* The previous active state is also State3. State3 is a terminating state.

You can import the generated Ladder Diagram code to CODESYS 3.5 and view the diagram. A portion
of the Ladder Diagram is shown.

3-3

3 Generating Ladder Diagram

Statel

transitionConditionl transiticnConditiond Statel new

L1k

stateflow_init

Ll Ll il

L1k

Statel transitionConditiond transiticnConditionl Stated _new
L1 L1 1M LD
State3

L1k

Statel new Statel

L1k

Il

3-4

In the preceding Ladder Diagram, each rung of the ladder ends in a coil. The coil corresponds to a
state of the original chart. The contacts before the coil determine if the coil receives power. You can
compare the Ladder Diagram visually with the Stateflow chart. For instance, the coil Statel new
receives power in one of these two cases:

* The normally open contact Statel is closed and the normally closed contacts
transitionConditionl and transitionCondition?2 are open.

* The normally open contact stateflow init is closed. This contact corresponds to the default
transition.

Once the coil Statel new receives power, the contact Statel new further down in the ladder is
then closed and the coil Statel receives power.

The

Ladder Diagram executes from top to bottom and from left to right.

Ladder Diagram Generation Workflow

1

Before generating Ladder Diagram code from your Stateflow chart, confirm that your chart is
ready for code generation.

See “Prepare Chart for Simulink PLC Coder Ladder Diagram Code Generation” on page 3-6.

Generate Ladder Diagram code from the Stateflow chart. The code is in a format suitable for
import to an IDE.

Generate a test bench along with the code. The test bench is in the Structured Text language.
You can later import the code along with the test bench to your IDE. The test bench invokes the
Ladder Diagram code and compares the output against the expected outputs from the original
Stateflow chart.

See “Generate Simulink PLC Coder Ladder Diagram Code from Stateflow Chart” on page 3-9.

Simulink PLC Coder Ladder Diagram Code Generation

3 Import the generated Ladder Diagram code to your CODESYS 3.5 IDE. Validate the diagram in
the IDE by using the generated test bench.

See “Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram” on page 3-14.

3 Generating Ladder Diagram

Prepare Chart for Simulink PLC Coder Ladder Diagram Code
Generation

Note Ladder diagram generation from Stateflow charts will be removed in a future release. To
generate ladder diagrams, use Simulink models instead. To create Simulink models compatible with
ladder logic generation, do one of the following:

* Use the blocks from the PLC Ladder library to create a model that is compatible with ladder
diagram generation. To open the PLC Ladder library, type plcladderlib at the MATLAB
command prompt.

* Import ladder logic from a L5X file with the plcimportladder function.

To generate ladder logic from the Simulink models, use these functions: plcgeneratecode and
plcgeneraterunnertb

This example shows how to prepare your Stateflow chart for Ladder Diagram code generation. Once
your chart is ready, you can generate Ladder Diagram code from the chart.

For the complete Ladder Diagram code generation workflow, see “Ladder Diagram Generation
Workflow” on page 3-4.

Design PLC Application with Stateflow

Use Stateflow to design state machines that model PLC controllers. Your Stateflow chart must have
these properties:

* The inputs and outputs to the chart must be Boolean. They correspond to the input and output
terminals of your PLC.

* Each state in the chart must correspond to an output. The output is true if the state is active.

To ensure that each state in the chart is mapped to an output, in the Properties dialog box of each
state, select Create output for monitoring. Then, select Self activity.

State Fault I&
General | Documentation | m
Mame: Fault 3
State Output
Faul Create output for monitoring: [Self activity v]
Data name: Fault -
i OK] [Cancel] [Help] Apply

3-6

* The transition conditions must involve only Boolean operations such as ~, & and | between the
inputs.

Prepare Chart for Simulink PLC Coder Ladder Diagram Code Generation

For instance, in the following chart, transitionConditionl, and transitionCondition2 are
Boolean inputs to the model. Statel, State2, and State3 correspond to Boolean outputs from the
model.

State1 \ State?

[transitionCondition1]

1

[transitionCondition2]

State3 1

Some advanced Stateflow features on page 3-18 are not supported because of inherent restrictions
in Ladder Diagram semantics. You can use the function plccheckforladder to check if the chart
has the required properties. You can also use the function plcprepareforladder to change certain
chart properties so that the chart is ready for Ladder Diagram code generation.

You can start generating Ladder Diagram code from the chart. See the example in “Generate
Simulink PLC Coder Ladder Diagram Code from Stateflow Chart” on page 3-9.

Create Test Harness for Chart

If you want to generate a test bench for validation of the Ladder Diagram code, create a test harness
for the Stateflow chart. The test harness can consist of multiple test cases. Using the test harness,
Simulink PLC Coder can generate test benches for validation of the Ladder Diagram code.

You can manually create a test harness by using the Signal Builder block or autogenerate a test
harness by using Simulink Design Verifier™. To autogenerate the test harness:

1 Right-click the chart or a subsystem containing the chart. Select Design Verifier > Generate
Tests for Subsystem.

2 After test creation, select Create harness model.

The harness model is created. The model consists of the original subsystem coupled with inputs from

a Signal Builder block. The block consists of multiple test cases, so that the states and transitions in
your model are covered at least once.

3 Generating Ladder Diagram

Test Case 1
transitionCondition1

//‘-H,_‘
ransitionCondition2

Inputs

Size-Type

transitionCondition1 State?

State2

transitionCondition2 State3

—»(D
State1

»(2)
State2

Test Unit (copied from Chart0)

)
State3

You can also create tests by using other blocks from the Simulink library. However, you must ensure
that the inputs to the chart are Boolean.

MH}O

Pulse Compare
Generator To Zero

» transitionCondition1

ﬂ_ﬂ > ()

Pulse Compare
Generator1 To Zero1

» transitionCondition2

Subsystem

—(D
State1
State1
State2)
State2
State3
—»(3)
State3

You can now generate Ladder Diagram code from the chart and validate the diagram.

To generate Ladder Diagram code only, use the original Stateflow chart.

To generate Ladder Diagram code with test bench, use the Stateflow chart coupled with the

Boolean inputs from the test cases. For instance, if you create a harness model with Simulink

Design Verifier, use the harness model for the Ladder Diagram code and test bench generation
instead of the original chart.

See “Generate Simulink PLC Coder Ladder Diagram Code from Stateflow Chart” on page 3-9.

3-8

Generate Simulink PLC Coder Ladder Diagram Code from Stateflow Chart

Generate Simulink PLC Coder Ladder Diagram Code from
Stateflow Chart

Note Ladder diagram generation from Stateflow charts will be removed in a future release. To
generate ladder diagrams, use Simulink models instead. To create Simulink models compatible with
ladder logic generation, do one of the following:

* Use the blocks from the PLC Ladder library to create a model that is compatible with ladder
diagram generation. To open the PLC Ladder library, type plcladderlib at the MATLAB
command prompt.

* Import ladder logic from a L5X file with the plcimportladder function.

To generate ladder logic from the Simulink models, use these functions: plcgeneratecode and
plcgeneraterunnertb

This example shows how to:

* Generate code from a Stateflow chart that you can view as Ladder Diagram in your IDE.
* Generate test bench for validation of the Ladder Diagram code in your IDE.

For the complete Ladder Diagram code generation workflow, see “Ladder Diagram Generation
Workflow” on page 3-4.

Stateflow Chart and Ladder Logic Diagram

The figure shows a Stateflow chart that implements three-aspect logic, a decision logic for many
railway signaling applications.

3-9

3 Generating Ladder Diagram

I ﬁnlSignaI_FauIi M
ExitSignal_Fault
Ve ExitSignal_Init Red)
ExitSignal_Init Red Red

3 ExitSignal_graen
ExitSignal_green

@ +ExitSignal_red
ExitSignal_red Yallow T
= s ExitSignal_yellow Yellow Yellow
ExitSignal_yellow
B Yellow Timer OV
Yellow_Timer OVER
v WspectControlSatisife Green)
AspectControlSatisifed Green Green
e FaultRectified
FaultRectified
D sGreenLampProving
GreenLampProving Fault)
b Power_LUp Fault Fault
Power Up
T RedLampProving
RedLampProving
T2 WLDHealthy Init — {5
WLDHealthy Init Init

#YellowlampProving

3
YellowLampProving AAspect

The chart consists of five states: Init, Fault, Red, Yellow, and Green. Based on the input to the
chart, transitions to any of these states can take place. For instance, the state Red becomes active in
the following scenarios:

+ Initialization and power up: The previous state is Init and the condition Power Up is true.

* Fault rectification: The previous state is Fault and the condition VLDHealthy &
FaultRectified is true.

» Transitions from other colors: The previous state is Green or Yellow, the conditions that allow
transition to Red are true, and the conditions that allow transition to another color or to the
Fault state are false.

* Staying red: The previous state is Red and the conditions that allow transition to another state
are false.

3-10

Generate Simulink PLC Coder Ladder Diagram Code from Stateflow Chart

]

[Power_Up]

Fault

Red ’

Yellow

l J

nLampProving..

The figure shows a portion of the Ladder Diagram code generated from the chart when viewed in the
CODESYS 3.5 IDE. The Ladder Diagram consists of contacts (normally open and normally closed) and
coils (normal, set, and reset).

Fault T 1 1 trans Red_new
]! N fl’D
U L] L

Green T 2_3_trans T 2 1 trans T_2_2 trans
m I 11 10
U] U Ut L}
Init Power_ Up
]! N
U] U
Red T 4 1 trans T 4 2 trans
n 10 10
U LK} L8}
Yellow T_5_2_trans T_5_1_trans
n o 1
U] U et
Green T 2_2_trans T 2 1 trans Yellow new
]! N N0 FFD
U] U Ut w
Red T 4 2 trans T 4 1 trans
n T 1,0
U U L8}
Yellow T_S5_1 trans T_5_2 trans T_5_3 trans
n 10 10)
U] LK} L8} el
Red_new Red
Il il
1)

3-11

3 Generating Ladder Diagram

You can map elements of the original Stateflow chart to these coils and contacts. For instance, the
coil Red_new corresponds to the update of the state Red in the Stateflow chart. For the coil to receive
power, one of the following must be true:

+ Initialization and power up: The normally open contacts Init and Power Up must be closed.
* Fault rectification: The normally open contacts Fault and T 1 1 trans must be closed. The

contact T 1 1 trans represents the transition condition VLDHealthy & FaultRectifiedin
the chart.

+ Transitions from other colors: The normally open contact Green must be closed and the
following must be true:
* The normally open contact T 2 3 trans must be closed. This contact corresponds to the
chart condition that must be true for transition to the Red state.
* The normally closed contacts T 2 1 transand T 2 2 trans must stay closed. These

contacts correspond to the chart condition that must be false for transition to the Red state. If
the conditions are true, the contacts open and the coil no longer receives power.

* Staying red: The normally open contact Red must be closed, and the normally closed contacts
T 4 1 transand T 4 2 trans must stay closed. These contacts correspond to the chart

conditions that must be false for the Red state to continue to be active. If the conditions are true,
the contacts open and the coil no longer receives power.

Generate Ladder Diagram from Chart

To generate Ladder Diagram code from the model plcdemo_ladder three aspect:

1 Open the model.
Open the PLC Coder app. Click the PLC Code tab.

3 Specify the target IDE for which to generate the Ladder Diagram code.
Click Settings. Specify a supported IDE for the option “Target IDE” on page 12-3. See “IDEs
Supported for Ladder Diagram Code Generation”. Click OK.

4 Right-click the chart and select PLC Code > Generate Ladder Logic for Chart.

If code generation is successful, in the subfolder plcsrc of the current working folder, you see the
file Mode IName . xml. You import this file to your IDE and view the Ladder Diagram. For the
CODESYS 3.5 IDE, see “Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram” on
page 3-14.

You can also use the function plcgenerateladder to generate Ladder Diagram code from a
Stateflow chart.

Generate Ladder Diagram Along with Test Bench

You can generate a test bench to validate the generated Ladder Diagram code. You import the code
together with the test bench in your IDE and validate the Ladder Diagram against the original
Stateflow chart using the test bench. To generate test bench along with the Ladder Diagram code:

1 Open the PLC Coder app. Click the PLC Code tab.
2 C(Click Settings. Select the option “Generate Testbench for Subsystem” on page 12-7.

3-12

Generate Simulink PLC Coder Ladder Diagram Code from Stateflow Chart

3 Right-click the chart and select PLC Code > Generate Ladder Logic for Chart.

The test benches use the inputs to the original Stateflow chart. Therefore, you can create test
harnesses for the original chart and reuse them for validation of the Ladder Diagram code.

You can also use the function plcgenerateladder to generate test benches.

After generating the Ladder Diagram code and the test benches, you can import them to your IDE.
For the CODESYS 3.5 IDE, see “Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate
Diagram” on page 3-14.

3-13

3 Generating Ladder Diagram

Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate
Diagram

Note Ladder diagram generation from Stateflow charts will be removed in a future release. To
generate ladder diagrams, use Simulink models instead. To create Simulink models compatible with
ladder logic generation, do one of the following:

* Use the blocks from the PLC Ladder library to create a model that is compatible with ladder
diagram generation. To open the PLC Ladder library, type plcladderlib at the MATLAB
command prompt.

* Import ladder logic from a L5X file with the plcimportladder function.

To generate ladder logic from the Simulink models, use these functions: plcgeneratecode and
plcgeneraterunnertb.

This example shows how to import generated Ladder Diagram code to an IDE and validate the
generated code against the original Stateflow chart by using the generated test bench.

For this example, the CODESYS 3.5 IDE is used. You can also use one of the other supported IDE. See
“IDEs Supported for Ladder Diagram Code Generation”.

For the complete Ladder Diagram code generation workflow, see “Ladder Diagram Generation
Workflow” on page 3-4.
Import Ladder Diagram XML

After code generation, you see the Ladder Diagram code XML file Mode IName . xml in a subfolder
plcsrc of the current working folder. To import the generated XML and view the Ladder Diagram in
the CODESYS 3.5 IDE:

Create an empty project.
2 Import the Ladder Diagram code to the project.

Select Project > Import PLCOpenXML and navigate to the folder containing the XML file.

A dialog box opens with a full list of the components imported from the XML. If you generate a
test bench for validation, you also see the testbench.

3-14

Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram

F '

Contents | Additional information |

Please select the items which should be imported.
All items will be imported below the node which is currently selected in the navigator.
You can change this selection while this dialog is open.

Currently selected target object: {Root)

Insertable items:

] Asped
=-[7] [copesys_contral_for x4
5[€} application

¥ £ MainTask
~[+] @ GVL_CONSTS
-] @ GVL_VARS
~[#] B MainTB
@ TestBend
-[#]] TestCasel
@ TestCase2
Iﬁ_?l TestCased
~[¥] H] TestCases
@ TestCasesh
-~ [#] B TestCases

~[#] B TestCase?

[Select =] [Deselect =] [Show Contents... [0K] [Cancel

3 On the POUs pane, you see the project. View the Ladder Diagram in the project.
You can compare the Ladder Diagram with the original Stateflow chart.

For instance, if you generate Ladder Diagram code from the model
plcdemo ladder three aspect, in the Ladder Diagram, you can identify the transition from
the Fault state to the Red state.

[Power Up]

WLDHealthy ...
g & FaultRectified] (Fault

Red

A
L

2 d [-RedLampProving ...
| [~VLDHealthy]

The transition appears in the Ladder Diagram in three steps:

3-15

3 Generating Ladder Diagram

3-16

a The normally open contacts VLDHealthy and FaultRectified are closed. Coil
T 1 1 trans receives power and is energized.

VLDHealthy FaultRectified
It

T_1_1_trans

nn
i} U

{1

b The normally open contacts Fault and T 1 1 trans are closed. The coil Red new receives

power and is energized. Other conditions not shown in figure must also be satisfied.

Fault T 1

.1 trans
nn nn
L}

Red_new

{3

¢ The normally open contact Red new is closed. The coil Red receives power and is energized.

Besides coils @I and normally open contacts lﬂ_l the Ladder Diagram also uses:

Normally closed contacts —l]f[l_ They appear if the ~ operator is used in a transition
condition.

Set coils _{IED and reset coils _(IRII : They are used in the Ladder Diagram for chart
initialization. Reset coils are also used if you enforce additional safeguards against multiple
states from being simultaneously active. See the argument InsertGuardResets in
plcgenerateladder.

For more information about these symbols, refer to the IEC 61131-3 specifications.

errors.

If the option is not active, you might have to change the version number in your XML. Search for
the version number in the XML and depending on the patch that you have, replace it with the
following version number:

* CODESYS V3.5 SP6 Patchl: 3.5.4.30

* CODESYS V3.5 SP6 Patch3: 3.5.6.30

* CODESYS V3.5 SP8 Patch2: 3.5.8.20

* CODESYS V3.5 SP8 Patch4: 3.5.8.40

Verify Ladder Diagram with Test Bench

In your project, you see the generated test bench. To simulate using the test bench and validate your
generated code:

1

2

3

Click the (Login) button and log in to the emulator device.

Click the * (Start) button and begin simulation.

Double-click a test bench in your project. You see the following variables updating to reflect the
results of validation.

Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram

* The variable testCycleNum increases from 0 to the number of cycles.
* The variable testVerify remains TRUE as long as the test bench verification succeeds.

3-17

3 Generating Ladder Diagram

Restrictions on Stateflow Chart for Ladder Diagram Generation

Note Ladder diagram generation from Stateflow charts will be removed in a future release. To
generate ladder diagrams, use Simulink models instead. To create Simulink models compatible with
ladder logic generation, do one of the following:

* Use the blocks from the PLC Ladder library to create a model that is compatible with ladder
diagram generation. To open the PLC Ladder library, type plcladderlib at the MATLAB
command prompt.

* Import ladder logic from a L5X file with the plcimportladder function.

To generate ladder logic from the Simulink models, use these functions: plcgeneratecode and
plcgeneraterunnertb

Ladder Diagram semantics must be represented with switches and relays. Therefore, if you intend to
generate a Ladder Diagram from a Stateflow chart, you cannot use some advanced features in your
chart. The Stateflow chart must have the following form:

* The inputs and outputs to the chart must be Boolean. These inputs and outputs correspond to the
input and output terminals of your PLC.

* Each state of the chart must correspond to a chart output.

* The expressions controlling the transition between states must involve only Boolean operations
between the inputs.

In addition, the chart must have the following properties. You can use the function
plccheckforladder to check if the chart has the required properties. You can also use the function
plcprepareforladder to change certain chart properties so that the chart is ready for Ladder
Diagram code generation.

* The chart Action Language must be C.

» Disable the following chart properties:

* Enable Super Step Semantics

* Execute (enter) Chart At Initialization

+ Initialize Outputs Every Time Chart Wakes Up
* The chart must have at least one input and output. The input and output data must be Boolean.
* Each output must correspond to a state in the chart. The output is true if the state is active.

To ensure that each state in the chart is mapped to an output, in the Properties dialog box of each
state, select Create output for monitoring. Then, select Self activity.

3-18

Restrictions on Stateflow Chart for Ladder Diagram Generation

State Fault ﬁ
General | Documentation | it
MName: Fault |i
State Output
Fault Create output for monitoring: [Self activity v]
Data name: Fault -
4 [OK] [Cancel] [Help] Apply

* The chart must not have data with scope other than input or output.
* The chart must not include:

* Atomic subcharts

* Multiple default transition

* Simulink functions

» Parallel states

* State hierarchy

* History junctions

* Dangling transitions

* Super transitions crossing subchart boundaries
* Conditional default paths

» Self transitions

See Also

Related Examples

. “Prepare Chart for Simulink PLC Coder Ladder Diagram Code Generation” on page 3-6
. “Generate Simulink PLC Coder Ladder Diagram Code from Stateflow Chart” on page 3-9
. “Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram” on page 3-14

More About
. “Simulink PLC Coder Ladder Diagram Code Generation” on page 3-2

3-19

3 Generating Ladder Diagram

Supported Features in Ladder Diagram

The ladder import feature of Simulink PLC Coder allows you to import Ladder Diagram created with
Rockwell Automation IDEs such as RSLogix 5000 and Studio 5000 into the Simulink environment as a
model.

Supported Ladder Elements

Simulink PLC Coder supports the following ladder elements:

* Boolean variables

» Data access to array elements, bus elements, bit, and constant variables.

* Multiple rungs

* Simple Jump, Temporary End, and other supported execution control elements.

* Ladder diagram blocks. See plcladderlib.

* Ladder Diagram Instructions. See “Instructions Supported in Ladder Diagram” on page 14-2
* L5X Datatypes:

L5X Data Types Simulink Types
BOOL Boolean datatype
SINT Int8 datatype
INT Int16 datatype
DINT Int32 datatype
REAL Single datatype
TIMER Timer bustype
COUNTER Counter bustype
CONTROL Control bustype
UDT UDT bustype
AOI AOI bustype

* Ladder diagram tags

* Controller Tags
* Program Tags

* AOI Tags such as Input, Output and InOut

See Also

plccleartypes | plcgeneratecode | plcgeneraterunnertb | plcimportladder |
plcladderlib | plcladderoption | plcloadtypes

More About

. “Import L5X Ladder Files into Simulink” on page 3-22

. “Modeling and Simulation of Ladder Diagrams in Simulink” on page 3-27

3-20

Supported Features in Ladder Diagram

“Generating Ladder Diagram Code from Simulink” on page 3-34

“Generating C Code from Simulink Ladder” on page 3-36

“Verify Generated Ladder Diagram Code” on page 3-38

“Simulink PLC Coder Workflow vs. Rockwell Automation RSLogix IDE Workflow” on page 3-42

3-21

3 Generating Ladder Diagram

Import L5X Ladder Files into Simulink

"

{End)

3-22

This example shows how to import a Ladder Diagram from an . L5X file created by using Rockwell
Automation IDEs such as RSLogix 9 5000 and Studio 5000 into the Simulink environment. The import

operation is performed by using the plcimportladder function.

Description of the Ladder Diagram

The figure shows a Ladder Diagram with a simple timer. The Ladder Diagram consists of four rungs
with contacts (Switch_ A, Lightl, Motor timer.DN), coils (Lightl, Light2, Motor), and TON

timer function.

Switch_A -
= i
) _—
Light1 -
b <
Light1 Switch ON Delay .
Ef =TiCIM- .
: Timer On Delay HCENS—]
Timer Motor_timer
Freset 3000« =IO
Accum 0»

Mator_timer (]

Motor
< >

The simple timer.L5X file was created by using the RSLogix 5000 IDE. A snippet of the
is shown.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<RSLogix5000Content SchemaRevision="1.0" SoftwareRevision="30.00"
TargetName="simple timer" TargetType="Controller"
ContainsContext="false" Owner="Arun Mathew Iype, MathWorks"
ExportDate="Mon Nov 12 16:35:28 2018" ExportOptions="NoRawData
L5KData DecoratedData ForceProtectedEncoding AllProjDocTrans">
<Controller Use="Target" Name="simple timer"
ProcessorType="Emulate 5570" MajorRev="30"

MinorRev="11" TimeSlice="20" ShareUnusedTimeSlice="1"
ProjectCreationDate="Mon Nov 12 16:33:36 2018"
LastModifiedDate="Mon Nov 12 16:33:43 2018"
SFCExecutionControl="CurrentActive"
SFCRestartPosition="MostRecent" SFCLastScan="DontScan"
ProjectSN="16#0000 0000"

MatchProjectToController="false" CanUseRPIFromProducer="false"
InhibitAutomaticFirmwareUpdate="0" PassThroughConfiguration="EnabledWithAppend"
DownloadProjectDocumentationAndExtendedProperties="true"
DownloadProjectCustomProperties="true"
ReportMinorOverflow="false">

<RedundancyInfo Enabled="false" KeepTestEditsOnSwitchOver="false"
IOMemoryPadPercentage="90"

DataTablePadPercentage="50"/>

<Security Code="0" ChangesToDetect="16#ffff ffff ffff ffff"/>
<SafetyInfo/>

<DataTypes/>

<Modules>

<Module Name="Local" CatalogNumber="Emulate 5570" Vendor="1" ProductType="14"
ProductCode="53" Major="30" Minor="11" ParentModule="Local" ParentModPortId="1"
Inhibited="false" MajorFault="true">

<EKey State="ExactMatch"/>

<Ports>

<Port Id="1" Address="0" Type="ICP" Upstream="false">

.L5X file

Import L5X Ladder Files into Simulink

<Bus Size="10"/>

</Port>

</Ports>

</Module>

</Modules>

<AddOnInstructionDefinitions/>

<Tags/>

<Programs>

<Program Name="MainProgram" TestEdits="false" MainRoutineName="MainRoutine"
Disabled="false" UseAsFolder="false">

<Tags>
Import Ladder Diagram

Before importing the . L5X file into Simulink :

» Verify the Ladder Diagram file is a valid .L5X file. The file can be verified by compiling it in
Rockwell Automation IDE.

» If the file is valid, copy the .L5X file into a folder with read and write permissions. You can also
create a separate folder to store all the imported files along with the original Ladder
Diagram .L5X file.

Use the plcimportladder function to import the ladder into Simulink. For this example, the
program Name of the ladder is MainProgram and the MainRoutineName is MainRoutine.

>> plcimportladder('simple timer.L5X")

The Ladder Diagram is imported into the pwd\simple timer.s1lx Simulink model. The state
information of the ladder elements is stored in the data store memory and updated by the model
during simulation. The plcout\simple timer value.m file gets called during the pre-load stage
of the Simulink model. This file sets the timer initial values in Motor timer data store memory.

The simple timer.slx Simulink model consists of a Ladder Diagram Controller as the top unit.

simple_timer

@

simple_timer

W E e

[0 E

This controller has a Main Task and Controller Tags. The Main Task consists of a Main
Program.

3-23

3 Generating Ladder Diagram

_ Logis
a j
1
4 B
Up to Parant POLI Contraller Tags
54 kain Toask
[
=
|

MainTenk

Ils

i a
£
= Up to Parent POU
MainP

ainProgram

=t

The Main Program contains the Simulink implementation of the simple timer.L5X Ladder
Diagram. The ladder rung executes from top to bottom and left to right.

3-24

Import L5X Ladder Files into Simulink

Aukd
Rungs

Add Rungs

Add
1 Rung

Agd Single Rung

L)

Up 1o Parent RFOL Frogram Varables
Swilch A Light1
XIC OTE RFung 1
Light?1 Light2
X OTE Fung 2

AR

Light1 TOM: Motor _timér
Xicz2 TON Rung 3

TON
! EN — Swilch ON Delay
Mabor_lirmers

Mator_tlirmer DM Mador

XIC3 OTE2 Rung 4

AR

You can use the Signal Builder block to create test inputs for Switch A and verify the operation of

the imported ladder. You can also generate a PLC Ladder Diagram code or a C code for the top-level
subsystem. If you want to edit the imported ladder, the Simulink blocks are in the template Ladder

Diagram Library. To open the library, enter:

plcladderlib

If your Ladder Diagram has comments associated with the rung, these comments are also imported to
Simulink. In the Simulink environment, the comments are connected to the respective rung. For
example, the Ladder Diagram for the simple timer has a comment Switch ON Delay. After
importing the ladder diagram to Simulink, the comment is also imported as seen in Rung 3 of the
imported Simulink model.

3-25

3 Generating Ladder Diagram

3-26

Similarly, when you generate Ladder Diagram code from a Simulink model containing a rung
comment, the comment is also generated in the (L5X) ladder file. If your Simulink model has
multiple comments associated with the rung, in the generated Ladder Diagram, these comments are
merged into a single comment with each individual comment appearing in a separate line.

If you have an L5X file containing an AOI with mixed ordered arguments, this order is preserved
during import and export of the files.

See Also

plccleartypes | plcgeneratecode | plcgeneraterunnertb | plcimportladder |
plcladderlib | plcladderoption | plcloadtypes

More About

“Supported Features in Ladder Diagram” on page 3-20

“Modeling and Simulation of Ladder Diagrams in Simulink” on page 3-27

“Generating Ladder Diagram Code from Simulink” on page 3-34

“Generating C Code from Simulink Ladder” on page 3-36

“Verify Generated Ladder Diagram Code” on page 3-38

“Simulink PLC Coder Workflow vs. Rockwell Automation RSLogix IDE Workflow” on page 3-42

Modeling and Simulation of Ladder Diagrams in Simulink

Modeling and Simulation of Ladder Diagrams in Simulink

The ladder modeling feature of Simulink PLC Coder enables you to create Ladder Diagrams in the
Simulink environment as a model. After creating the Ladder Diagram, you can simulate and generate
code for the Ladder Diagram models from within the Simulink environment.

1 To create a Ladder Diagram, open the Simulink PLC Coder Ladder library. At the MATLAB
command line, enter:

plcladderlib

The Ladder library opens containing all the blocks required for building the Ladder Diagram in
Simulink.

3-27

3 Generating Ladder Diagram

PLE Conbclar Suita

PLC Ceontrol b

Tk

Program

JERIRTN|
Subrculing

FE: D
Function Bleck [A01)

=

n 111} 1 R Ea
Frurgy
Jncian iariha Pl Varssh i
P Rl St P i Tl ' A _} }': A
& & L] Cl A 58 = ==
[FELS QsF
e L] aTe on om ks
;]
H ¥] b L e b 3 0sR E oFF
ol anfy
oM T TOF: T AT T CTLEC [4 RES: A
Tak TaF RTO T] RES
TaK TaF AT Ty o RES
] <]] 3 (&1 1 3 4 3 ou A cnfp b 3
T T T [- A
B HE LES GRT LEQ GEQ
] 3 E 3 E E
Le=r E0U 4 Huch nEQ 1 b T] b T A= LEQ 1 Xu=s gEQ 4
(= b [Nucn Tu=n Nun Aucn
CPT. Expe
CPT ADD B MuL o
3 3 3 E
4 1 b iy 1
| EPT 4
] . Nen Ao Yo mue = L Hu=n miw
deai cmaifp ot f deai -
f Nuen Xun Jusn b =
AND o
[P y HOT Llé:;
; J
] I 1 LR
W Hu=h AND Ju=h OR HOT]
b [ciemi By | e Ju= cieal -
Ao Aucn
WP LEL O AFI HaE MCR
3 L 3 3 LEL:L 1 3 THE s 3 AF 3 MR 1 k WER 3
3'28 fee] FLL
[GO e FLL

Modeling and Simulation of Ladder Diagrams in Simulink

2 Create a blank Simulink model. You can drag appropriate blocks from the library to build your
ladder logic model in Simulink. For each block, you can double-click the block to see the block
parameters and use the help menu to view its description. For more information on the Ladder
instructions that are implemented by these blocks, refer to the LOGIX 5000 Controllers General
Instructions Reference Manual.

3 The Simulink PLC Coder Ladder library contains top level ladder logic block such as
PLCControllerSuite, PLC Controller, Task, Ladder Diagram Program, Ladder diagram Subroutine,
Ladder Diagram Function Block (AOI), and AOI Runner. All these blocks are organization blocks
(Ladder Diagram containers) that cannot be on Ladder Diagram rungs. Apart from these
organizational blocks, other blocks from the library cannot be top level ladder logic block for
simulation.

LOFunclionBlock: O
PLCCantrallerSuile PLCCandraller Task Ladder Diagram Program Ladder Diagram Subroutine Ladder Diagram Funclion Block (ACH)

B B sy B B

* PLCControllerSuite can hold controller tags that are visible for all ladder logic blocks in this
controller, and also can contain Task block.

* PLCController allows you to build ladder logic directly. All the tags in the controller level
ladder diagram are controller tags (global variables or I/O symbols)

» Task is used to contain Ladder Diagram programs that are using the same sample time and
priority.

Note Code generation for empty Task blocks is not supported. If a Task block is empty, the
software does not issue warnings or errors during code generation, but the generated code
produces errors in Rockwell IDEs.

* Ladder Diagram Program enables you to build ladder logic directly. Program-level Ladder
Diagram can have program scope variables and also can access controller tags if defined.

* Ladder Diagram Subroutine enables you to create and define a named ladder routine. You can
edit the logic implemented by the subroutine by clicking the Routine Logic button under
the block parameters menu of this block.

» Ladder Diagram Function Block (AOI) enables you to create the Ladder Diagram function
block. You can edit the parameters and specifications of this block by using the various
options available under the block parameters menu of this block.

* AOI Runner is special program block that can contain only one Ladder Diagram Function
Block (AOI: add-on instruction) designed for AOI testing (test bench generation and
verification).

4 Drag a PLCControllerSuite block into the blank model you created in the previous step. You can
double-click each organizational unit to traverse to the lower level ladder logic semantics and
build your Ladder Diagram. The empty ladder logic semantics is shown.

3-29

3 Generating Ladder Diagram

w4 i urlt'ltled » PLCCDnT.rullerSuite » _Lngic 3 Task » Ladder Diagram Program P _Logic

= iy
IE' I Ui Parent BIU Program darmban
=

-
0 g]
¥ t T

« I

5 Use the XIC and Motor blocks from the library to construct a simple ladder diagram. Use Add
Rungs or Add 1 Rung buttons in the ladder logic semantic to add a new rung. All added blocks
must be on the rung. Use the Junction block to merge rung branches.

__lagic X simpleController

® 4 i s'lmple(ontroller » s'lmple{ontroller » _Logic » MainTask » MainProgram 3 _Logic

I@ -]
o
=t Up to Parent POU Program Variables
Start Stop Motor
XIC XIC2 OTE Rung 1
Motar
Xic1
Add I
Rungs
Add Rungs
Add
1 Rung
Add Single Rung
'
«

6 Double-click each new block added to the rung and specify the tags. In Ladder Diagrams, tags
(variables) are used for representing all inputs, outputs, and internal memory. The tag can be a
variable name or an expression like:

3-30

Modeling and Simulation of Ladder Diagrams in Simulink

L E® e

Bl

O

~ @ @

Logic

* Variable Name: Start, Stop, Switch
* Bit Access: MyInt.0, MyInt.31

* Array Element: A[1], B[2,3], C[idx], DI[i, jI. Use of braces for indexing is not allowed in a tag
expression. For example, A(2) is illegal.

e Structure: A.B, C.D, E.EG
* Mixture: A[1].BI[i,j1.C[3].D

* Expressions: A[3].B > C.D; A[3]+B[4].C

The tags can have attributes such as Data Type, Initial Value, and size. To change the
attributes of the tag, open the Program Variables table within the Ladder Diagram Program
block. You can delete the unused variables in the variable table by selecting the Delete option.
You must select Apply for the changes to take effect. Go to controller level block, and double-
click the Controller Tags table to specify the global variable and I/O symbol attributes.

To add rung comments to your model in Simulink, create a connected annotation (see Motor
Control Logic in image) to the rung terminal block. For more information on annotation
connectors, see “Associate Annotations with Blocks and Areas”.

simpleController

{+ |[’a|simpieControlier P [Pa|simpleController P [Pa|_ Logic P [Pa|MainTask P [Pa|MainProgram P [Pa|_ Logic

)

L 7]
I Up ta Parent POU Program Variables

Start Stop Motor
I XIC2 OTE Rung 1

AbwA O

Motor

XIC1

5

Rungs

Add Rungs

Add
1 Rung

Add Single Rung
h J

9

Update the ladder logic model to reflect changes. You have now created a simple ladder model in

Simulink.

Model an AOI Prescan Routine

1
2
3
4

Double-click the Function Block (AOI) inside the parent program unit.
Select the Allow Prescan Routine check box and click Apply button.
Click the Prescan Routine button.

Add the logic to Prescan Routine Ladder Diagram.

3-31

3 Generating Ladder Diagram

Note If Function Block (AOI) is at the top level of a ladder diagram model and not inside a parent
program unit, the Allow Prescan Routine option is not enabled.

Ladder Model Simulation

To perform Ladder Diagram simulation in Simulink, you must connect appropriate input and output
blocks to the ladder model.

1 Use the plcladderoption function to enable Animation. At the MATLAB command line, enter:

plcladderoption('simpleController', 'Animation', 'on')

2 Connect input and output ports to the PLCControllerSuite block to provide inputs for simulation
and read the outputs. You must modify the attributes of the switch and motor tags. To change the
attributes of the tag, open the Program Variables table within the Ladder Diagram Program
block and set them to the values shown.

!
Program Variable Spreadshest |
Mame Scope Data Type Size Initial Value Delete
Motor Externa = l
Start Externa = ‘
Stop Externa - !

Cancel Help Apply

3 Go to controller level block and double-click the Controller Tags table to specify the global
variable and I/O symbol attributes.

Block Parameters: Controller Tags
Global Variable and Symbaol Spreadsheet

Name Mapping Type Port Data Type size Initial Value ~ Delete
Start Input Symbol v | |1 ~ | | boolean NI | [true |
Stop Input Symbol v | |2 ~ | | boolean NI | false |
Motor Output Symbe | |1 ~ | | boolean NI | false |

Cancel Help Apply

4 The software now adds input and output ports to the PLCControllerSuite block. You can use
Simulink blocks to add inputs to the ladder model. For example, you can use the Constant block
to add Boolean inputs to mimic switch behavior.

5 Traverse to the Ladder Diagram Program block of the ladder model and Step Forward through
the simulation. The software uses the inputs provided, runs a behavioral simulation, and
animates the ladder rungs and blocks based on the execution state.

3-32

Modeling and Simulation of Ladder Diagrams in Simulink

__Logic X

®

O/ @ 4B e

2 @ E

=]

simpleController

i |E|s'|mple(ontroller P [Pa|simpleController M [Pa|_ Logic P [Pa|MainTask P [Pa|MainProgram b [Ba| Logic

Add
Rungs

Add Rungs

Add
1 Rung

Add Single Rung

H”
|}

h 4

)

Up to Parent POU

XIc2

Mator
OTE

Program Variables

Rung 1

e

6 You can continue stepping forward or run a continuous simulation to the end.

See Also
plccleartypes | plcgeneratecode | plcgeneraterunnertb | plcimportladder |
plcladderlib | plcladderoption | plcloadtypes

More About
“Supported Features in Ladder Diagram” on page 3-20

“Import L5X Ladder Files into Simulink” on page 3-22

“Generating Ladder Diagram Code from Simulink” on page 3-34

“Generating C Code from Simulink Ladder” on page 3-36

“Verify Generated Ladder Diagram Code” on page 3-38
“Simulink PLC Coder Workflow vs. Rockwell Automation RSLogix IDE Workflow” on page 3-42

3-33

3 Generating Ladder Diagram

Generating Ladder Diagram Code from Simulink

The following example demonstrates how to import a simple Ladder Diagram from an .L5X file
(simpleController.L5X) into the Simulink environment and then generate Ladder Diagram (L5X)
from the imported model. The Ladder Diagram . L5X file was created using RSLogix 5000 IDE and
contains contacts and coils representing switches and motor. The following is a snapshot of the ladder

structure.
Start Stop tiotior
o 1E 1E e
tiotior
—]

1 Use the plcladderimport function to import the ladder into Simulink.

[mdlName,mdlLib,busScript] = plcimportladder('simpleController.L5X", 'OpenModel','0On")

2 The imported model contains a PLC Controller block named simpleController, followed by a
Task block named MainTask and finally a Ladder Diagram Program block named MainProgram.
The model imported into Simulink has blocks that implement the functionality of the contacts and

coils.

__logic X simpleController

® @ 4@ EIS]mpIeController } [Pa|simpleController B (P3| Logic B [Pa(MainTask B |Pa|MainProgram b [P|_ Logic

. ﬁ
L
= Up ta Parant POU Program Variables
P Start Slop Motor
XIC XiCcz2 OTE Rung 1
Motor
xIC1
Add I
Rungs
Add Rungs
Add
1 Rung
~ Add Single Rung
(7] ¥
« I

3 Generate code for the subsystem, simpleController/simpleController.

generatedFiles = plcgeneratecode('simpleController/simpleController');

3-34

Generating Ladder Diagram Code from Simulink

PLC code generation successful for 'simpleController/simpleController’.

Generated ladder files:
plcsrc\simpleController gen.L5X

Note You cannot generate Structured Text code from the Ladder Diagram blocks. The Ladder
feature supports only ladder code generation.

See Also

plccleartypes | plcgeneratecode | plcgeneraterunnertb | plcimportladder |
plcladderlib | plcladderoption | plcloadtypes

More About

“Supported Features in Ladder Diagram” on page 3-20

“Import L5X Ladder Files into Simulink” on page 3-22

“Modeling and Simulation of Ladder Diagrams in Simulink” on page 3-27

“Generating C Code from Simulink Ladder” on page 3-36

“Verify Generated Ladder Diagram Code” on page 3-38

“Simulink PLC Coder Workflow vs. Rockwell Automation RSLogix IDE Workflow” on page 3-42

3-35

3 Generating Ladder Diagram

Generating C Code from Simulink Ladder

The following example demonstrates how to import a simple ladder diagram from an .L5X file
(simpleController.L5X) into the Simulink environment and then generate C code from the
imported model. You must have a valid Simulink Coder license and necessary compilers to generate C
code from the model. For more information, see “Get Started with Simulink Coder” (Simulink Coder).

The . L5X file was created using RSLogix 5000 IDE and contains contacts and coils representing
switches and motor. The following is a snapshot of the ladder structure.

Start Stop Motar
o [k1

T
= aE
Motor

Use the plcladderimport function to import the ladder into Simulink.

[mdlName,mdlLib,busScript] = plcimportladder('simpleController.L5X", 'OpenModel','0On")

The imported model contains a PLC Controller block named simpleController, followed by a Task
block named MainTask and finally a Ladder Diagram Program block named MainProgram. The
model imported into Simulink has blocks that implement the functionality of the contacts and coils.

__logic ¥ simpleController
® @ & @s'lmpleController » [Pa|simpleController # [Pa|_ Logic P [Pa|MainTask P [Pa|MainProgram b [Pa|_ Logic h
=]
. ﬁ
L |
=+ Up ta Parent POU Program Variables
[23]
[+ Start Siop Motor
XC XIc2 OTE Rung 1
e |
Motor
XIC1
Add I
Rungs
Add Rungs
Add
1 Rung
. Add Single Rung
(i@ ¥
« I

3-36

To generate C code for the subsystem, simpleController/simpleController you must first
enable 'FastSim' option for the Simulink Ladder Diagram model.

currentState = plcladderoption('simpleController/simpleController', 'FastSim','on');

Generating C Code from Simulink Ladder

Open the Configuration Parameters dialog box from the model editor by clicking Modeling > Model
Settings.

Alternately, type the following commands at the MATLAB command prompt.

cs = getActiveConfigSet(model);
openDialog(cs);

Ensure that a valid Toolchain is selected.

In the model window, initiate code generation and the build process for the model by using any of the
following options:

* Click the Build Model button.

* Press Ctrl+B.

* In the Apps gallery, under Code Generation, click Embedded Coder. The C Code tab opens.
Select Build> Build.

* Invoke the rtwbuild command from the MATLAB command line.

See Also

plccleartypes | plcgeneratecode | plcgeneraterunnerth | plcimportladder |
plcladderlib | plcladderoption | plcloadtypes

More About

. “Supported Features in Ladder Diagram” on page 3-20

. “Import L5X Ladder Files into Simulink” on page 3-22

. “Modeling and Simulation of Ladder Diagrams in Simulink” on page 3-27
. “Generating Ladder Diagram Code from Simulink” on page 3-34

. “Verify Generated Ladder Diagram Code” on page 3-38

3-37

3 Generating Ladder Diagram

Verify Generated Ladder Diagram Code

The following example demonstrates how to import a simple Ladder Diagram from an .L5X file
(simpleXIC.L5X) into the Simulink environment and generate test bench code for it. The Ladder
Diagram .L5X file was created using RSLogix 5000 IDE and contains an AOI named simpleXIC with
contact and coil representing a switch and a light. The following is a snapshot of the ladder structure.

3-38

Switch Ligght
JE —

1 Usethe plcladderimport function to import the ladder into Simulink.

[mdlName,mdlLib, busScript] = plcimportladder('simpleXIC.L5X", ...
'OpenModel', 'On', 'TopAOI', 'simpleXIC')
2 The imported model contains an AOI Runner block named simpleXIC runner, followed by a

Ladder Diagram Function (AOI) block named simpleXIC.

_ Logic
& <@ & @simpleXIC_runner P [P simpleXIC_runner b |#a|_ Logic hd
o]
—
Up to Pamnt FOU
(5]
LOFunctonBiook: 0 simpleXic
D simpleXIC
F'T-“ - S

Enabiein EnableOul

Swilch_in Lighi_Cuit
«

3 Add Signal Builder input block, Scope and output ports as shown.

Verify Generated Ladder Diagram Code

simpleXIC_runner

® @ simpIeXIC_runner »
@
1
=
=]
simpleXIC_runner
O
Size-Type
Test Case 1
Switch_In Switch_In Light_Out M 2
Inputs
]
. O
<«

4 Modify the Signal Builder input to mimic a switch operation as shown.

3-39

3 Generating Ladder Diagram

4 Signal Builder (simpleXIC_runner/Inputs) — O >
File Edit Group Signal Axes Help &
GH| Y RB|oo | —~Tn[EFREE > 1= hE
Active Group: | Test Case 1 v = | m
Switch_In
1_
0.8
0.6
0.4 -
0.2
0
| | L | | | | |
0 0.05 01 0.15 0.2 0.25 0.3 0.35 0.4
Time (sec)
E Switch_In
w
Click to select signal

5 Generate test-bench for the Ladder Diagram model.

Thcode

plcgeneraterunnertb('simpleXIC runner/simpleXIC runner')

Tbcode

1x1 cell array
{'C:\runnerTB\simpleXIC runner.L5X"'}

If the test-bench code generation is successful, a test-bench file simpleXIC runner.L5Xis
created. The generated AOI test bench file can be verified on Rockwell Automation IDE.

If you have created the Ladder Diagram model in Simulink and are generating Ladder Diagram (L5X)
code, you can also use the Generate testbench for subsystem option available on the PLC Code

3-40

Verify Generated Ladder Diagram Code

Generation pane in the Configuration Parameters dialog box to generate test bench code along with
ladder code. When the selected subsystem is ladder AOI Runner block and test bench option is on,
the generated code will include test bench, selected AOI, as well as dependent AOI and UDT types.

Q

Solver
Data Import/Export

Math and Data Types

» Diagnostics

Hardware Implementation

Model Referencing
Simulation Target

General options
Target IDE: Rockwell Studio S000: AQI| =
+| Show full target list
Target IDE Path:

Code Output Directory: plcsrc

» Code Generation Generate testbench for subsystem Generate code...
» Coverage)
» HDL Code Generation Target specific options

¥ PLC Code Generation

Comments
Optimization

Aggressively inline Structured Text function calls

Symbols
Report
OK Cancel Help Apply
See Also
plccleartypes | plcgeneratecode | plcgeneraterunnertb | plcimportladder |
plcladderlib | plcladderoption | plcloadtypes
More About

“Supported Features in Ladder Diagram” on page 3-20

“Import L5X Ladder Files into Simulink” on page 3-22

“Modeling and Simulation of Ladder Diagrams in Simulink” on page 3-27

“Generating Ladder Diagram Code from Simulink” on page 3-34

“Generating C Code from Simulink Ladder” on page 3-36

“Simulink PLC Coder Workflow vs. Rockwell Automation RSLogix IDE Workflow” on page 3-42

3-41

3 Generating Ladder Diagram

Simulink PLC Coder Workflow vs. Rockwell Automation RSLogix
IDE Workflow

These flowcharts show the workflow comparison in a ladder diagram created by Simulink PL.C Coder
versus a ladder diagram created in the Rockwell Automation RSLogix IDE.

* You first place either the PLC Controller or PLC Controller Suite block onto the blank Simulink
model page. This block contains all the tasks, programs, program tags, controller tags, routines,
AOI blocks and so on. For more information, see PLC Controller.

* You place the Task block inside the PLC Controller or PLC Controller suite block. The Task blocks
house the programs, program tags, routines, AOI blocks, and so on. For more information see,
Task.

* You place the Ladder Diagram Program block or blocks inside the Task block. The Ladder Diagram
Program block contains program tags, routines , AOI blocks, and so on. For more information see,
Program

* You next place JSR (Jump To Subroutine) blocks within the Ladder Diagram Program block. The
JSR blocks contain the ladder rungs, ladder logic and AOI blocks within them. For more
information see ,Subroutine.

* You can place the AOI block either inside the JSR block or inside the Ladder Diagram Program
block. For more information see, Function Block (AOI).

Rockwell

Simulink PLC Coder Studio5000 IDE

Controller/ControllerSuite

Controller
Block

Task

Block Task

N

Ladder Diagram

Program Elock Program

AN

3-42

Ladder Diagram)
; Ladder Diagram)
Subroéjltér;tla{[JSF{] Function Block (A0I) Subroutine(JSR) A

Simulink PLC Coder Workflow vs. Rockwell Automation RSLogix IDE Workflow

See Also

Function Block (AOI) | PLC Controller | PLC Controller Suite |Program|Subroutine
| Task

More About

. “Supported Features in Ladder Diagram” on page 3-20

. “Import L5X Ladder Files into Simulink” on page 3-22

. “Modeling and Simulation of Ladder Diagrams in Simulink” on page 3-27
. “Generating Ladder Diagram Code from Simulink” on page 3-34

. “Verify Generated Ladder Diagram Code” on page 3-38

3-43

3 Generating Ladder Diagram

Create Custom Instruction in PLC Ladder Diagram Models

You can create user-defined instructions for your ladder models by using the Custom Instruction
block. You can store these blocks containing custom instructions in a user-defined library named
plcuserlib.slx. You can also import, simulate, and export your ladder instructions by using your

3-44

custom blocks.

Create User-Defined Instruction

To create a user-defined instruction, use a Custom Instruction block added to the Simulink PLC Coder

Ladder Library.

1

To open the Ladder Library, at the MATLAB command line, enter:

plcladderlib

The Ladder Library opens all the blocks required for building the Ladder Diagram in Simulink.

To create a new Simulink library, in the Library tab click New > Library. From the Simulink
start page, select Blank Library and click Create Library.

Drag a Custom Instruction block from the Ladder Library to the new library that you created.

To build your own ladder logic model, double-click your Custom Instruction block to see the block
parameters. Use the Help menu to view their descriptions.

Block Parameters: Custom Instruction
Custom Instruction Block

Template block for custom PLC Instruction.

Instruction Mame: |Custom Instruction

Inputs and Outputs Code Generation
Number of Inputs

11

Input Types

| {{'SINT', 'INT', 'DINT', 'REAL'}}

MNumber of Outputs

1

Output types

|{'SINT", 'INT', 'DINT', 'REAL'}}

Cancel Help

Apply

Create Custom Instruction in PLC Ladder Diagram Models

5 In Instruction Name text field, give a name to your instruction. Specify the inputs and outputs
required for your instruction block. Click Apply, and then click OK.

6 T look inside the mask, click ©~ in the Custom Instruction block. The blocks inside the mask
enable the instruction to simulate with other PLC Ladder instructions. The user-defined logic is
included in the Instruction Enable block.

BlockEnable
p Rungln ‘
» RungOut
AND
Rung-condition-out
C1 r—»1 1 > bl (1)
RunglnQverride RungOutOverride
y
n

(2) 1 1 »(2)

srcA dest
Instruction_Enable
7 Save the library as plcuserlib. s1x. You can add multiple instruction blocks to this library.

Calculate Square Root by using Custom Instruction Block

This example shows how to calculate square root of an input signal by using a Custom Instruction

block.

1 To open the Simulink Start Page, on the MATLAB Home tab, click Simulink.

2 Select Blank Library and click Create Library.

3 Save the library as plcuserlib.slx to a folder on the MATLAB path.

4 To open the PLC Ladder Library, at the MATLAB command line, enter:
plcladderlib

5 Drag the Custom Instruction block from plcladderlib to your user-defined library
plcuserlib.slx.

6 Double-click the Custom Instruction block to open the Block Parameters.

7 Specify the Instruction Name as SQR. Check that the Number of Inputs is 1 and Input Types
is specified as a cell array of allowed data types. Similarly, check that the Number of Outputs is
1 and Output Types is specified as a cell array of allowed data types. Click OK.

8

Click *~ in the SQR block and double-click the Instruction Enable subsystem.

3-45

3 Generating Ladder Diagram

9 Inside the Instruction Enable subsystem, add a Sqrt block from the Simulink / Math Operations
Library. Double-click this block and select signedSqrt from Main>Function, and then click
OK.

10 Connect the input and output ports to the input and output ports of Sqrt block by using Data
Type Conversion blocks.

@plcuserlib P |Ba|Custom Instruction P |Ba|Instruction_Enable

Y
Y

convert convert —Il-

11 Navigate to the top level of the library. Click Lock Links and Unlock Library in the Library tab,
and then save the library. Simulink PLC Coder can now use the SQR instruction when
plcuserlib.slx is on the MATLAB path. You can drag this instruction to your models from the
library that you have created and saved.

12 To verify if Simulink PLC Coder has identified the newly created instruction, at the MATLAB
command line, enter:

plcladderinstructions

This command lists the instructions that Simulink PL.C Coder can use. The supported instructions
displayed in the output includes the SQR instruction.

The example in the image shows the use of the SQR instruction inside an Add-On Instruction
block.

3-46

Create Custom Instruction in PLC Ladder Diagram Models

|"&| demo_model b |3 ADI Runner b [Ba| Logic M [Pa|Function Block (AQT) b [P Enable b B3| Logic

L)

I Up to Parent POU Function Block Variables

Start End
XIc OTE Rung 1

Custom Instruction

— > 4&4 H
Add 1 F Variable Read SOR Variable Write

B |

Add Rungs
I

Add
1 Rung

Add Single Rung

Limitations

The Custom Instruction block does not support instructions:

* With data type array and struct (composite) as arguments.
* That require internal data storage (states).

See Also
Custom Instruction | plcimportladder | plcladderinstructions | plcladderlib

More About

. “Supported Features in Ladder Diagram” on page 3-20

. “Import L5X Ladder Files into Simulink” on page 3-22

. “Modeling and Simulation of Ladder Diagrams in Simulink” on page 3-27
. “Generating Ladder Diagram Code from Simulink” on page 3-34

3-47

Generating Test Bench Code

* “How Test Bench Verification Works” on page 4-2

* “Integrate Generated Code with Custom Code” on page 4-3

* “Import and Verify Structured Text Code” on page 4-4

» “Verify Generated Code That Has Multiple Test Benches” on page 4-7

4 Generating Test Bench Code

How Test Bench Verification Works

The Simulink PLC Coder software simulates your model and automatically captures the input and
output signals for the subsystem that contains your algorithm. This set of input and output signal data
is the test bench data. The coder also automatically generates a test bench, or test harness, using the
test bench data.

The test bench runs the generated code to verify that the output is functionally and numerically
equivalent to the output from the execution of a Simulink model. The following table shows how the
test bench compares the expected and actual data values.

Data Type Comparison Error Tolerance
integer absolute 0

boolean absolute 0

single relative 0.0001

double relative 0.00001

4-2

The relative tolerance comparison for single or double data types uses the following logic:
IF ABS(actual value - expected value) > (ERROR TOLERANCE * expected value) THEN

testVerify := FALSE;
END IF;

To verify the generated code using the test bench, import the generated Structured Text and the test
bench data into your target IDE. You can import test bench code:

* Manually.
* Automatically, including running the test bench.

For more information, see “Import and Verify Structured Text Code” on page 4-4.

Depending on the target IDE platform, the Simulink PLC Coder software generates code into one or
more files. See “Files Generated by Simulink PLC Coder” on page 1-14 for list of the target IDE
platforms and the possible generated files.

Integrate Generated Code with Custom Code

Integrate Generated Code with Custom Code

For the top-level subsystem that has internal state, the generated FUNCTION BLOCK code has
ssMethodType. ssMethodType is a special input argument that the coder adds to the input
variables section of the FUNCTION BLOCK section during code generation. ssMethodType enables
you to execute code for Simulink Subsystem block methods such as initialization and computation
steps. The generated code executes the associated CASE statement based on the value passed in for

this argument.

To use ssMethodType with a FUNCTION BLOCK for your model, in the generated code, the top-level
subsystem function block prototype has one of the following formats:

Has Internal State

ssMethodType Contains...

Yes

The generated function block for the block has an extra first parameter
ssMethodType of integer type. This extra parameter is in addition to the
function block I/O parameters mapped from Simulink block I/O ports. To use
the function block, first initialize the block by calling the function block with
ssMethodType set to integer constant SS INITIALIZE. If the IDE does not
support symbolic constants, set ssMethodType to integer value 0. For each
follow-up invocation, call the function block with ssMethodType set to
constant SS_STEP. If the IDE does not support symbolic constants, set
ssMethodType to integer value 1. These settings cause the function block to
initialize or compute and return output for each time step. If you select Keep
top level ssMethod name same as non-top level, the
ssMethodType SS_STEP will be generated as SS_OUTPUT with integer value
3.

No

The function block interface only has parameters mapped from Simulink block
I/O ports. There is no ssMethodType parameter. To use the function block in
this case, call the function block with I/O arguments.

For non top-level subsystems, in the generated code, the subsystem function block prototype has one
of the following formats:

Has Internal State

ssMethodType Contains...

Yes The function block interface has the ssMethodType parameter. The generated
code might have SS INITIALIZE, SS OUTPUT, or other ssMethodType
constants to implement Simulink semantics.

No The function block interface only has parameters mapped from Simulink block

I/O ports. There is no ssMethodType parameter.

4-3

4 Generating Test Bench Code

Import and Verify Structured Text Code

4-4

After you generate code and test benches for your subsystem, you can import them to your target
IDE. Using the test bench data, you can verify that the results from your generated code match your
simulation results.

If you want to import the generated code, see “Generate and Automatically Import Structured Text
Code” on page 1-17.

Generate, Import, and Verify Structured Text

If you are working with the PHOENIX CONTACT (previously KW) Software MULTIPROG 5.0/5.50 or
Phoenix Contact PC WORX 6.0 IDE, see “Import and Verify Structured Text to PHOENIX CONTACT
(previously KW) Software MULTIPROG 5.0 and Phoenix Contact PC WORX 6.0 IDEs” on page 4-4.

Otherwise, to generate, import, and verify Structured Text code:

1 Specify that test bench code must be generated for the subsystem.

a Open the PLC Coder app. Click the PLC Code tab.
b Click Settings.
¢ Select “Generate Testbench for Subsystem” on page 12-7.

If you do not specify that test bench code must be generated, when you automatically verify the
generated code, you see the error Testbench not selected.

2 You can generate the code and testbench, and manually import them to your target IDE. For
information on how to import generated code, see the user manual for your target IDE.

Alternatively, after code generation, import and verify the generated code automatically. Right-
click the subsystem and select PLC Code > Generate, Import, and Verify Code for
Subsystem. The software:

Generates the code and test bench.

Starts the target IDE.

Creates a project.

Imports the generated code and test bench to the new project in the target IDE.

o o N T 9

Runs the generated code on the target IDE to verify it.
For information on:

* IDEs not supported for automatic import and verification, see “Troubleshoot Automatic Import
Issues” on page 1-18.

» Possible reasons for long testbench code generation time, see “Troubleshooting: Long Test Bench
Code Generation Time” on page 4-5.

Import and Verify Structured Text to PHOENIX CONTACT (previously
KW) Software MULTIPROG 5.0 and Phoenix Contact PC WORX 6.0 IDEs

Before you can automatically import generated code to this IDE, create an Empty template. You must
have already set your target IDE to KW-Software MULTIPROG 5.0 or Phoenix Contact PC WORX 6.0.

Import and Verify Structured Text Code

1 Start the PHOENIX CONTACT (previously KW) Software MULTIPROG 5.0/5.50 or Phoenix
Contact PC WORX 6.0 IDE.

Select File > Delete Template. Delete any template named Empty, and click OK when done.
Select File > New Project, select Project Wizard, then click OK.

In the Project Name field, type Empty,
In the Project Path field, type or select a path to which you have write privileges.
Click Next.

In the remaining wizard pages, click Next to leave the default selections. At the end of the
wizard, click Finish.

e N T 9

The IDE is updated with the new Empty project tree.
4 In the project, delete everything under the following nodes:

* Logical POUs
* Physical Hardware

5 Verify that the project tree has only top-level nodes for Libraries, Data Types, Logical
POUs, and Physical Hardware. There must not be any subtree nodes.

In the IDE, select File > Save As Template.
In Template Name, type Empty.

Click OK.

Close the IDE interface.

© 00 N O

Open your model, right-click the Subsystem block, and select one of the following:

* PLC Code > Generate and Import Code for Subsystem
* PLC Code > Generate, Import, and Verify Code for Subsystem

If you automatically generate, import, and verify code, the software:

Generates the code and test bench.

Starts the target IDE.

Creates a project.

Imports the generated code and test bench to the new project in the target IDE.

gua A W N =

Runs the generated code on the target IDE to verify it.

Troubleshooting: Long Test Bench Code Generation Time

If code generation with test bench takes too long, one possible reason is that the test bench data size
exceeds the limit that Simulink PLC Coder can handle. The test bench data size is directly related to
the number of times the input signal is sampled during simulation. For large simulation time or more
frequent sampling, the test bench data can be large.

To reduce test bench generation time, do one of the following:

* Reduce the duration of the simulation.
* Increase the simulation step size.

4 Generating Test Bench Code

» Ifyou want to retain the simulation duration and the step size, divide the simulation into multiple
parts. For a simulation input signal with duration [0, t], divide the input into multiple parts with
durations [0, t;], [t;, t, 1, [t,, t3], etc., where t; < t, < t3 < .. < t. Generate test bench
code for each part separately and manually import them together to your IDE.

See Also

Related Examples
. “Verify Generated Code That Has Multiple Test Benches” on page 4-7

4-6

Verify Generated Code That Has Multiple Test Benches

Verify Generated Code That Has Multiple Test Benches

You can generate code that has multiple test benches from your subsystem. For the generated code to
have multiple test benches, the input to your subsystem must consist of multiple signal groups.

To generate multiple test benches for your subsystem:

1 Provide multiple signal groups as inputs by using a Signal Builder block with multiple signal
groups.

Instead of manually entering a Signal Builder block and creating multiple signal groups, you can
use Simulink Design Verifier to create a test harness model from the subsystem. In the test
harness model, a Signal Builder block with one or more signal groups provides input to the
subsystem. You can use this Signal Builder block to provide inputs to your subsystem. If your
model is complex, Simulink Design Verifier can create a large number of signal groups. See
“Troubleshooting: Test Data Exceeds Target Data Size” on page 4-8.

To create your Signal Builder block by using Simulink Design Verifier:

a Right-click the subsystem and select Design Verifier > Generate Tests for Subsystem.
b In the Simulink Design Verifier Results Summary window, select Create harness model.

Size-Type

TestCme e 1 SermAdiorStans fodis_ 1
/_./“‘\.‘ MAM_ 1P — Ak _1
ControlerOut —— ("7)
MSO_1IP > MS0_t Conh elrOut
MAFR_ 1P f— PR
Inputs Test Unit { copied from Controller 1)
o
ooc
Te=ct

Test Case Explanation

¢ Open the Inputs block in the test harness model. The Inputs block is a Signal Builder block
that can have one or more signal groups.

In the Signal Builder window, make sure that more than one signal group is available in the
Active Group drop-down list.

4 Generating Test Bench Code

r ™
'_i- Signal Builder (pledeme_motion_contrel_harnessd/Inputs) E@ﬂ
File Edit Group Signal Axes Help
SH| i B@ oo | —JLEFREE > 1 oe| A&
Active Group: | |Test Case 1 & - E]
1 Test Case 2
Ayl Test Case 3
0.5 l
(= i i : A £
1+
MAM 1.IP
0.5 -
0 I
MSO 1.IP
0.5 -
E I
1r
MAFR 1.1P
1]
A I I | I
a 0.5 1 156 2
Time (sec)
¥ Axis 1.ServoActionStatus
¥ MAN_1.IP
Hame: |Axis_1.ServoiAction! Z Ms0_1.P
Index: |1 v: ¥ MAFR_1.IP
Click to select, Shift+click to add ‘ Axis_1.5ervohctionStatus (#1) [YMin YMax]

d Copy the Signal Builder block from the test harness model and use this block to provide
inputs to your original subsystem.

2 Specify that test benches must be generated for the subsystem.

a Open the PLC Coder app. Click the PLC Code tab.
b Click Settings.
¢ Select “Generate Testbench for Subsystem” on page 12-7.
3 Right-click the subsystem and select PLC Code > Generate, Import and Verify Code for
Subsystem.

In your target IDE, you can see multiple test benches. Each test bench corresponds to a signal
group.

Troubleshooting: Test Data Exceeds Target Data Size

If the test data from the multiple signal groups exceeds the maximum data size on your target, you
can encounter compilation errors. If you encounter compilation errors when generating multiple test
benches, try one of the following:

4-8

Verify Generated Code That Has Multiple Test Benches

* Reduce the number of signal groups in the Signal Builder block and regenerate the test benches.
* Increase the simulation step size for the subsystem.

Limitations

When you are switching between signal groups, the model simulation time must remain the same for
the entire simulation. Do not change the model simulation time when switching between signal
groups.

See Also

Related Examples
. “Import and Verify Structured Text Code” on page 4-4

4-9

Code Generation Reports

* “Information in Code Generation Reports” on page 5-2

* “Create and Use Code Generation Reports” on page 5-4

* “View Requirements Links from Generated Code” on page 5-13
* “Working with the Static Code Metrics Report” on page 5-14

5 Code Generation Reports

Information in Code Generation Reports

The coder creates and displays a Traceability Report file when you select one or more of these

options:

GUI Option Command-Line Property Description

Generate PLC GenerateReport Specify whether to create code

traceability generation report.

report

Generate PLC GenerateWebview Include the model web view in the code

model web view generation report to navigate between
the code and model within the same
window. You can share your model and
generated code outside of the MATLAB
environment.

In the Configuration Parameters dialog box, in the Report panel, you see these options.

Code generation report
Generate traceability report

Generate model web view

Note You must have a Simulink Report Generator™ license to generate traceability reports.

The coder provides the traceability report to help you navigate more easily between the generated
code and your source model. When you enable code generation report, the coder creates and displays
an HTML code generation report. You can generate reports from the Configuration Parameters dialog
box or the command line. Traceability report generation is disabled when generating Ladder
Diagrams from Stateflow chart. See “Traceability Report Limitations” on page 12-30 . A typical
traceability report looks something like this figure:

5-2

Information in Code Generation Reports

Code Generation Report = m} X
& Find: l:l 4 % Match Case
Traceability Report Traceability Report for plcdemo_simple_subsystem

Code Metrics Report
Table of Contents

Generated Files

1. Eliminated / Virtual Blocks
SimpleSubsystem.exp 2. Traceable Simulink Blocks / Stateflow Objects / MATLAB Functions
o pledemo_simple_subsystem/SimpleSubsystem

Eliminated / Virtual Blocks

Block Name Comment
<81>/U Inport
<81>/¥ Outport

Traceable Simulink Blocks / Stateflow Objects / MATLAB Functions

Subsystem: plcdemo_simple_subsystem/SimpleSubsystem

Object Name Code Location

<81>/Gain SimpleSubsystem.exp:43
<81>/Sum SimpleSubsystem.exp:45
<81>/Unit Delay SimpleSubsystem.exp:40, 46, 50

OK Help

5-3

5 Code Generation Reports

Create and Use Code Generation Reports

In this section...

“Generate a Traceability Report from Configuration Parameters” on page 5-4
“Keep the Report Current” on page 5-5

“Trace from Code to Model” on page 5-5

“Trace from Model to Code” on page 5-6

“Model Web View in Code Generation Report” on page 5-7

“Generate a Static Code Metrics Report” on page 5-11

“Generate a Traceability Report from the Command Line” on page 5-12

Generate a Traceability Report from Configuration Parameters

To generate a Simulink PLC Coder code generation report from the Configuration Parameters dialog
box:

1 Verify that the model is open.

2 Open the PLC Coder app. Click the PLC Code tab.
3 Click Settings and navigate to the PLC Code Generation pane.
4 To enable report generation, select Report > Generate traceability report.
5 Click Apply.
&% Configuration Parameters: simple_subsystem/Configuration (Active) — O *
Q
Solver Code generation report

Data Import/Export
Math and Data Types
Diagnostics [] Generate model web view

I [v] Generate traceability report I

L

Hardware Implementation 7] Open report automatically
Model Referencing

Simulation Target

Code Generation

Coverage

HDL Code Generation

Design Verifier

¥ PLC Code Generation

Comments

[
»
[
[

Optimization
Identifiers
Report

oK Cancel Help Apply

Create and Use Code Generation Reports

6 Click Generate PLC Code to initiate code and report generation. The coder generates HTML
report files as part of the code generation process.

The HTML report appears:

& Find: l:lﬁ_ﬁ % Match Case
Traceability Report Traceability Report for plcdemo_simple_subsystem

Code Metrics Report
Table of Contents

Generated Files 1. Eliminated / Virtual Blocks
SimpleSubsystem.ex 2. Traceable Simulink Blocks / Stateflow Objects / MATLAB Functions
o plcdemo_simple_subsystem/SimpleSubsystem

Eliminated / Virtual Blocks

Block Name Comment
<S1>/U Inport
<S1=/Y Qutport

Traceable Simulink Blocks / Stateflow Objects / MATLAB Functions

Subsystem: plcdemo_simple subsystem/SimpleSubsystem

Object Name Code Location

<51>/Gain SimpleSubsystem.exp:43
<S1>/Sum SimpleSubsystem.exp:45
<51>/Unit Delay SimpleSubsystem.exp:40, 46, 50

OK Help

For more information, see:

* “Trace from Code to Model” on page 5-5

* “Trace from Model to Code” on page 5-6

Keep the Report Current

If you generate a code generation report for a model, and then change the model, the report becomes

invalid. To keep your code generation report current, after modifying the source model, regenerate
code and the report. If you close and then reopen a model, regenerate the report.

Trace from Code to Model

You must have already generated code with a traceability report. If not, see “Generate a Traceability
Report from Configuration Parameters” on page 5-4 or “Generate a Traceability Report from the
Command Line” on page 5-12.

To trace generated code to your model:

3-5

5 Code Generation Reports

1 In the generated code HTML report display, look for <S1>/Gain. Code Generation Report has
syntax highlighting for easy readability. PLC-specific keywords are highlighted in blue, comments
in green, and the rest of the code in black.

VAR TEMP
END VAR

CASE ssMethoaType

S51/Gain

2 In the HTML report window, click a link to highlight the corresponding source block. For
example, in the HTML report shown in the previous figure, you click the hyperlink for the Gain
block (highlighted) to view that block in the model. Clicking the hyperlink locates and displays
the corresponding block in the model editor window. You can use the same method to trace other
block from the HTML report.

double double double :
. ’ 1
u b

‘ Zain

Trace from Model to Code

doublk

u
z

You can select a component at any level of the model with model-to-code traceability. You can also
view the code references to that component in the HTML code generation report. You can select the
following objects for tracing:

* Subsystem

Create and Use Code Generation Reports

* Simulink block

* MATLAB Function block

* Truth Table block

* State Transition Table block

» Stateflow chart, or the following elements of a Stateflow chart:

* State

* Transition

* Graphical function

* MATLAB function

* Truth table function

You must have already generated code with a traceability report to trace a model component to the
generated code. If not, see “Generate a Traceability Report from Configuration Parameters” on page
5-4 or “Generate a Traceability Report from the Command Line” on page 5-12.

To trace a model component to the generated code:

1 Open the subsystem.

2 Click PLC Code.

3 Click the component to trace and in the Review Results section, click Navigate to Code.

4 Selecting Navigate to Code activates the HTML code generation report. The following figure
shows the result of tracing the Gain block within the subsystem.

UnitDelay DSTATE := 0.0;

35 STEP:

b Gain := (U - UnitDelay DSTATE) * 1.1;

e

In the report, the highlighted tag S1/Gain indicates the beginning of the generated code for the
block. You can use the same method to trace from other Simulink, Stateflow, and MATLAB objects
to the generated traceability report.

For a programmatic way to trace a block in the model to generated code, see rtwtrace.

Model Web View in Code Generation Report
Model Web Views

To review and analyze the generated code, it is helpful to navigate between the code and model. You
can include a web view of the model within the HTML code generation report. You can then share
your model and generated code outside of the MATLAB environment. You need a Simulink Report
Generator license to include a Web view (Simulink Report Generator) of the model in the code
generation report.

5-7

5 Code Generation Reports

Browser Requirements for Web Views

Web views require a web browser that supports Scalable Vector Graphics (SVG). Web views use SVG
to render and navigate models.

You can use the following web browsers:

Mozilla® Firefox® Version 1.5 or later, which has native support for SVG. To download the Firefox
browser, go to https://www.mozilla.org/en-US/firefox/.

Apple Safari Web browser

The Microsoft® Internet Explorer® web browser with the Adobe® SVG Viewer plugin. To download
the Adobe SVG Viewer plugin, go to www.adobe.com/devnet/svg/.

Note Web views do not currently support Microsoft Internet Explorer 9.

Generate HTML Code Generation Report with Model Web View

This example shows how to create an HTML code generation report which includes a web view of the
model diagram.

o U A W N M

Open the plcdemo simple subsystem model.

Open the PLC Coder app. Click the PLC Code tab.

Click Settings and navigate to the Code Generation pane.

To enable report generation, select Report > Generate traceability report.
To enable model web view, select Report > Generate model web view.
Click OK.

The dialog box looks something like this figure:

https://www.mozilla.org/en-US/firefox/
https://www.adobe.com/svg/

Create and Use Code Generation Reports

& Configuration Parameters: simple_subsystern/Configuration (Active) - O X
Salver Code generation report

Data Import/Export y
Math and Data Types Generate traceability report
Diagnostics I Generate model web view I

Hardware Implementation

v

Open report automatically
Maodel Referencing

Simulation Target

Code Generation

Coverage

HDL Code Generation

Design Verifier

¥ PLC Code Generation
Comments
Optimization
Identifiers

3
»
»
4

Report

OK Cancel Help Apply

7 Click Generate PLC Code to initiate code and report generation. The code generation report for
the top model opens in a MATLAB web browser.

5-9

5 Code Generation Reports

& Find: |:|ﬁ_ﬁ W Match Case
Traceability Report for plcdemo_simple_subsystem

Traceability Report

Code Metrics Report
Table of Contents

Eenerstea ties 1. Eliminated / Virtual Blocks
2. Traceable Simulink Blocks [Stateflow Objects / MATLAB Functions
o pledemo_simple_subsystem/SimpleSubsystem

SimpleSubsystem.exp

Eliminated / Virtual Blocks

Block Name Comment
<51>/U Inport
<S1x/¥ Qutport

Traceable Simulink Blocks / Stateflow Objects / MATLAB Functions

Suhsustam: nirdeman_simnle _sithsustem/SimnleSuhsvstem v

SimpleSubsystem || View All | SimpleSubsystem

5-10

© |] pledemo_simple_subsystem » [Fa] SimpleSubsystem ~ @ | = Main ~
] ShowPortLabels FromPortlcon
- Permissions ReadWrite
= o b ErrarFen
Gain PermitHierarchical... All
TreatAsAtomicUnit on
MinAlgLoopOccurr... off
l SystemSampleTime -1
d ~ Code Generation
Unit Delay RTWSystemCode Nonreusable
function
RTWFcnNameOpts User specified
RTWFcnName SimpleSubsystem
» RTWFileNameOpts Auto "
OK Help

8 In the left navigation pane, select a source code file. The corresponding traceable source code is
displayed in the right pane and includes hyperlinks.

9 Click a link in the code. The model web view displays and highlights the corresponding block in

the model.

10 To go back to the code generation report for the top model, at the top of the left navigation pane,
click the Back button until the report for the top model is displayed.

For more information about navigating between the generated code and the model diagram, see:

* “Trace from Code to Model” on page 5-5
* “Trace from Model to Code” on page 5-6

Model Web View Limitations

When you are using the model web view, the HTML code generation report includes the following

limitations:

* Code is not generated for virtual blocks. In the model web view, if you click a virtual block, the
code generation report clears highlighting in the source code files.

Create and Use Code Generation Reports

Stateflow truth tables, events, and links to library charts are not supported in the model web view.
Searching in the code generation report does not find or highlight text in the model web view.

In a subsystem build, the traceability hyperlinks of the root-level inports and outports blocks are
disabled.

If you navigate from the actual model diagram (not the model web view in the report), to the
source code in the HTML code generation report, the model web view is disabled and not visible.
To enable the model web view, open the report again, see “Open Code Generation Report”
(Simulink Coder).

Generate a Static Code Metrics Report

The PLC Coder Static Code Metrics report provides statistics of the generated code. The report is
generated when you select Generate Traceability Report in the Configuration Parameters dialog
box. You can use the Static Code Metrics Report to evaluate the generated PLC code before
implementation in your IDE. For more information, see “Working with the Static Code Metrics
Report” on page 5-14.

The procedure is the same as generating the Traceability Report.

g A W N R

Open the PLC Coder app. Click the PLC Code tab.

Click Settings and navigate to the PLC Code Generation pane.

To enable report generation, select Report > Generate traceability report.
Click OK.

Click Generate PLC Code to initiate code and report generation. The coder generates HTML
report files as part of the code generation process. The Code Metrics Report is shown on the left
navigation pane.

5-11

5 Code Generation Reports

5-12

Code Generation Report — O w
< & Find: I:h} % Match Case
Traceaility Report Static Code Metrics Report

The static code metrics report provides statistics of the generated code. Metrics are estimated from static

. analysis of the generated code using the IEC 61131 data type specification: SINT 8, INT 16, DINT 32, REAL 32,
Generated Files LREAL 64 bits. Actual object code metrics might differ due to target specific compiler and platform settings.
SimpleSubsystem.exp

Table of Contents

. File Information

. Global Variables

. Global Constants

. Function Block Information

o p

1. File Information [hide]

[-1 Summary

Generated source files : 1
Lines of code : 8
Lines : 17

i-1 File details

File Name Generated On
SimpleSubsystem.exp 01/11/2017 10:27 PM

2. Global Variables [hide]

No global variables defined in the generated code.

Generate a Traceability Report from the Command Line

To generate a Simulink PLC Coder code generation report from the command-line code for the
subsystem, plcdemo _simple subsystem/SimpleSubsystem:

1 Open a Simulink PL.C Coder model, for example:

open_system('plcdemo _simple subsystem');

2 Enable the code generation parameter PLC_GenerateReport. To view the output in the model
web view, also enable PLC_GenerateWebview:

set_param('plcdemo_simple subsystem', 'PLC_GenerateReport', 'on');
set_param('plcdemo_simple_subsystem', 'PLC_GenerateWebView', ‘'on');

3 Generate the code.

generatedfiles = plcgeneratecode('plcdemo simple_subsystem/SimpleSubsystem')

A traceability report is displayed. In your model, a View diagnostics hyperlink appears at the
bottom of the model window. Click this hyperlink to open the Diagnostic Viewer window.

If the model web view is also enabled, that view is displayed.

View Requirements Links from Generated Code

View Requirements Links from Generated Code

For requirements reviews, design reviews, traceability analysis, or project documentation, you can
create links to requirements documents from your model with the Simulink Requirements™ software.
If your model has links to requirements documents, you can also view the links from the generated
code.

Note The requirement links must be associated with a model object. If requirements links are
associated with the code in a MATLAB Function block, they do not appear in generated code
comments.

To view requirements from generated code:
1 From your model, create links to requirements documents.

See, “Requirements Management Interface” (Simulink Requirements).
2 For the subsystem for which you want to generate code, specify the following configuration

parameters.
Option Purpose
Include comments on page 12-12 Model information must appear in code

comments.

Generate traceability report on page 12-30 |After code is generated, a Code Generation
Report must be produced.

3 Generate code.

The Code Generation Report opens. The links to requirements documents appear in generated
code comments. When you view the code in the Code Generation Report, you can open the links
from the comments.

5-13

5 Code Generation Reports

Working with the Static Code Metrics Report

In this section...

“Workflow for Static Code Metrics Report” on page 5-14
“Report Contents” on page 5-14

“Function Block Information” on page 5-15

You can use the information in the Static Code Metrics Report to assess the generated code and make
model changes before code implementation in your target IDE.

Before starting, you must familiarize yourself with potential code limitations of your IDE. For
example, some IDEs have limits on the number of variables or lines of code in a function block.

For detailed instructions on generating the report, see “Generate a Static Code Metrics Report” on
page 5-11.

Workflow for Static Code Metrics Report

This is the basic workflow for using the Static Code Metrics Report with your model.

Generate the PLCcode | ,/ Know the limits :r
for the subsystem T for your IDE
l /'/\‘\

- .

Check the table in 7 ™~
-~ Are model ™~ No Proceed to code
the Static Code F——p< >
~ 27 i i
Metrics Report \cjlanges neede/d/./ implementation

\\\ ///
Yes
Click the function +| | Thereport will
block name 7| | display the code

Make necessary Trace from codeto |
changes model [~

Report Contents

The Static Code Metrics Report is divided into the following sections:

5-14

Working with the Static Code Metrics Report

+ File Information: Reports high-level information about generated files, such as lines and lines of

code.
* Global Variables: Reports information about global variables defined in the generated code.
* Global Constants: Reports information about global constants defined in the generated code.

* Function Block Information: Reports a table of metrics for each function block generated from
your model.

Function Block Information

You can use the information in the Function Block Information table to assess the generated code
before implementation in your IDE. The leftmost column of the table lists function blocks with
hyperlinks. Clicking a function block name leads you to the function block location in the generated
code. From here, you can trace from the code to the model. For more information, see “Trace from
Code to Model” on page 5-5.

Code Generation Report — O %

< & Find: l:lﬁ_ﬁ % Maich Case

2. Global Variables [hide] ~

Traceability Report

No global variables defined in the generated code.

Generated Files 3. Global Constants [hide

Simplesubsystem.ex Global constants defined in the generated code.

Global Constant Size (bytes)
SS_INITIALIZE 1
SS_STEP 1
Total 2

4. Function Block Information [hide]

Function block metrics in table format. "Number of Locals" includes state and temporary variables (does
not include other function block instance variables).

Name Self Stack Lines of Code Lines Number of Numberof Number of

Size (bytes) Inputs Qutputs Locals

SimpleSubsystem 33 8 17 2 1 2
v

5-15

Working with Tunable Parameters in the
Simulink PLC Coder Environment

* “Block Parameters in Generated Code” on page 6-2
* “Control Appearance of Block Parameters in Generated Code” on page 6-4

6 Working with Tunable Parameters in the Simulink PLC Coder Environment

Block Parameters in Generated Code

To control how the block parameters appear in the generated code, you can either define the
parameters as Simulink.Parameter objects in the MATLAB workspace or use the Model Parameter
Configuration dialog box. For more information, see “Control Appearance of Block Parameters in

Generated Code” on page 6-4.

Simulink PLC Coder exports tunable parameters as exported symbols and preserves the names of
these parameters in the generated code. It does not mangle these names. As a result, if you use a
reserved IDE keyword as a tunable parameter name, the code generation can cause compilation
errors in the IDE. As a best practice, do not use IDE keywords as tunable parameter names.

The coder maps tunable parameters in the generated code as listed in the following table:

TwinCAT 2.11

variable

in generated code and
expected to be defined
externally.

Target IDE Parameter Storage Class
SimulinkGlobal ExportedGlobal ImportedExtern Imported-
ExternPointer
CoDeSys 2.3 Local function block |Global variable Variable is not defined |Ignored. If you set the
variables in generated code and |parameter to this
expected to be defined|value, the software
externally. treats it the same as
ImportedExtern.
CoDeSys 3.3 Local function block |Global variable Variable is not defined |Ignored. If you set the
variables in generated code and |parameter to this
expected to be defined|value, the software
externally. treats it the same as
ImportedExtern.
CoDeSys 3.5 Local function block |Global variable Variable is not defined |Ignored. If you set the
variables in generated code and |parameter to this
expected to be defined|value, the software
externally. treats it the same as
ImportedExtern.
B&R Automation |Local function block |Local function block |Local function block |[Ignored. If you set the
Studio 3.0 variable variable variable. parameter to this
value, the software
treats it the same as
ImportedExtern.
B&R Automation |Local function block |Local function block |Local function block |[Ignored. If you set the
Studio 4.0 variable variable variable. parameter to this
value, the software
treats it the same as
ImportedExtern
Beckhoff Local function block |Global variable Variable is not defined |Ignored. If you set the

parameter to this
value, the software
treats it the same as
ImportedExtern.

6-2

Block Parameters in Generated Code

Target IDE Parameter Storage Class
SimulinkGlobal ExportedGlobal ImportedExtern Imported-
ExternPointer
KW-Software Local function block |Local function block |[Local function block |Ignored. If you set the

MULTIPROG 5.0

variable

variable

variable.

parameter to this
value, the software
treats it the same as
ImportedExtern.

Phoenix Contact
PC WORX 6.0

Local function block
variable

Global variable

Variable is not defined
in generated code and
expected to be defined
externally.

Ignored. If you set the
parameter to this
value, the software
treats it the same as
ImportedExtern.

RSLogix 5000 17,
18: AOI

AOI local tags

AOI input tags

AOI input tags.

Ignored. If you set the
parameter to this
value, the software
treats it the same as
ImportedExtern.

RSLogix 5000 17,
18: Routine

Instance fields of
program UDT tags

Program tags

Variable is not defined
in generated code and
expected to be defined
externally.

Ignored. If you set the
parameter to this
value, the software
treats it the same as
ImportedExtern.

Siemens SIMATIC
STEP 7

Local function block
variable

Global variable

Variable is not defined
in generated code and
expected to be defined
externally.

Ignored. If you set the
parameter to this
value, the software
treats it the same as
ImportedExtern.

Siemens TIA
Portal

Local function block
variable

Global variable

Variable is not defined
in generated code and
expected to be defined
externally.

Ignored. If you set the
parameter to this
value, the software
treats it the same as
ImportedExtern

Generic

Local function block
variable

Global variable

Variable is not defined
in generated code and
expected to be defined
externally.

Ignored. If you set the
parameter to this
value, the software
treats it the same as
ImportedExtern.

PLCopen

Local function block
variable

Global variable

Variable is not defined
in generated code and
expected to be defined
externally.

Ignored. If you set the
parameter to this
value, the software
treats it the same as
ImportedExtern.

6-3

6 Working with Tunable Parameters in the Simulink PLC Coder Environment

Control Appearance of Block Parameters in Generated Code

6-4

Unless you use constants for block parameters in your model, they appear in the generated code as
variables. You can choose how these variables appear in the generated code. For more information,
see “Block Parameters in Generated Code” on page 6-2.

To control how the block parameters appear in the generated code:

Use variables instead of constants for block parameters.
Define these parameters in the MATLAB workspace in one of the following ways:

* Use a MATLAB script to create a Simulink.Parameter object. Run the script every time
that the model loads.

Simulink stores Simulink.Parameter objects outside the model. You can then share
Simulink.Parameter objects between multiple models.

* Use the Model Configuration Parameters dialog box to make the parameters tunable.

Simulink stores global tunable parameters specified using the Configuration Parameters
dialog box with the model. You cannot share these parameters between multiple models.

Note The MATLAB workspace parameter value must be of the same data type as used in the
model. Otherwise, the value of the variable in the generated code is set to zero. See “Workspace
Parameter Data Type Limitations” on page 18-4.

Configure Tunable Parameters with Simulink.Parameter Objects
This example shows how to create and modify a Simulink.Parameter object.

The model plcdemo_tunable params slparamobj illustrates these steps. The model contains a
Subsystem block SimpleSubsystem that has three Gain blocks with tunable parameters, K1, K2, and
K3.

1 Write a MATLAB script that defines the tunable parameters.

The following script setup tunable params.m creates the constants K1, K2, and K3 as
Simulink.Parameter objects, assigns values, and sets the storage classes for these constants.

For more information on the storage classes, see “Block Parameters in Generated Code” on page
6-2.

% tunable parameter mapped to local variable
K1 = Simulink.Parameter;

K1.Value = 0.1;

K1.CoderInfo.StorageClass = 'Model default';

% tunable parameter mapped to global variable
K2 = Simulink.Parameter;

K2.Value = 0.2;

K2.CoderInfo.StorageClass = 'ExportedGlobal’;

% tunable parameter mapped to global const
K3 = Simulink.Parameter;
K3.Value = 0.3;

Control Appearance of Block Parameters in Generated Code

K3.CoderInfo.StorageClass = 'Custom';
K3.CoderInfo.CustomStorageClass = 'Const';

Specify that the script setup _tunable params.m must execute before the model loads and
that the MATLAB workspace must be cleared before the model closes.

a In the model window, go to the Modeling tab and select Model Properties from the Model
Settings drop-down.

b In the Model Properties dialog box, on the Callbacks tab, select PreLoadFcn. Enter
setup_tunable params for Model pre-load function.

Madel Properties: pledemnco_tunable_params_slparamoh;j >

Main Callbacks History Description Data

Model callbacks Model pre-load function:

PreLoadFcn®
PostLoadFecn
InitFcn
StartFcn
PauseFcn
ContinueFcn
StopFon
PreSaveFcn
PostSaveFcn
CloseFcn™®

setup_tunable_params

Cancel Help Apply

¢ On the Callbacks tab, select CloseFcn. Enter clear K1 K2 K3; for Model close
function.

Every time that you open the model, the variables K1, K2, and K3 are loaded into the base
workspace. You can view the variables and their storage classes in the Model Explorer.

Generate code and inspect it.

6 Working with Tunable Parameters in the Simulink PLC Coder Environment

6-6

Variable Storage Class Generated Code (3S CoDeSys 2.3)
K1 Model default K1 is a local function block variable.
FUNCTION BLOCK SimpleSubsystem
\./AR
K1: LREAL := 0.1;
END_QAR
éND_FUNCTION_BLOCK
K2 ExportedGlobal K2 is a global variable.
VAR _GLOBAL
K2: LREAL := 0.2;
END VAR
K3 CoderInfo.CustomStorageClass set |[K3is a global constant.
to Const.

VAR GLOBAL CONSTANT
SS_INITIALIZE: SINT := 0;
K3: LREAL := 0.3;
SS STEP: SINT := 1;
END_VAR

Make Parameters Tunable Using Configuration Parameters Dialog Box

This example shows how to make parameters tunable using the Model Configuration Parameters
dialog box.

The model plcdemo_tunable params illustrates these steps. The model contains a Subsystem
block SimpleSubsystem that has three Gain blocks with tunable parameters, K1, K2, and K3.

1

Specify that the variables K1, K2, and K3 must be initialized before the model loads and that the
MATLAB workspace must be cleared before the model closes.

In the Modeling tab and select Model Properties from the Model Settings drop-down.

In the Model Properties dialog box, on the Callbacks tab, select PreLoadFcn. Enter
K1=0.1; K2=0.2; K3=0.3; for Model pre-load function.

¢ On the Callbacks tab, select CloseFcn. Enter clear K1 K2 K3; for Model close
function.

On the Modeling tab and select Model Settings to open the Configuration Parameters dialog
box.

Navigate to Optimization pane. Specify that all parameters must be inlined in the generated
code. Select Inlined for Default Parameter Behavior.

To override the inlining and make individual parameters tunable, click Configure. In the Model
Parameter Configuration dialog box, from the Source list, select Referenced workspace
variables.

Ctrl+select the parameters and click Add to table >>.

Control Appearance of Block Parameters in Generated Code

By default, this dialog box sets all parameters to the SimulinkGlobal storage class. Set the
Storage class and Storage type qualifier as shown in this figure. For more information on the
storage classes, see “Block Parameters in Generated Code” on page 6-2.

Description

@l Madel Parameter Configuration: pledemo_tunable_params

Lefine the global (tunable) parameters foryour model. These parametars will affect the generated code by enabling accessto parameters

Source list Global dunable) parameters
Refarenced workspace vatiables W Marne Starage class Starage type gualifier
1 11 SimulinkGlobal (auto) W
REL ExportedGlabal w w
2 k2
K7 ExportedGlobal t
* |cons W
9 K2 3 k3
3 K2
Refresh list [ey
Feady]34] ’ Cancel] ’ Help] [Apply

6 Generate code and inspect it.

Variable Storage Class

Generated Code (3S CoDeSys 2.3)

K1 SimulinkGlobal

K1 is a local function block variable.

FUNCTION BLOCK SimpleSubsystem
VAR

K1: LREAL := 0.1;
END VAR

END_FUNCTION BLOCK

6 Working with Tunable Parameters in the Simulink PLC Coder Environment

6-8

Variable Storage Class Generated Code (3S CoDeSys 2.3)
K2 ExportedGlobal K2 is a global variable.
VAR GLOBAL
K2: LREAL := 0.2;
END VAR
K3 CoderInfo.CustomStorageC |K3 is a global constant.

lass and Storage type
qualifier set to Const.

VAR GLOBAL CONSTANT
SS INITIALIZE: SINT := 0O;
K3: LREAL := 0.3;
SS STEP: SINT := 1;

END VAR

Controlling Generated Code Partitions

* “Generate Global Variables from Signals in Model” on page 7-2
* “Control Code Partitions for Subsystem Block” on page 7-3
* “Control Code Partitions for MATLAB Functions in Stateflow Charts” on page 7-8

7 Controlling Generated Code Partitions

Generate Global Variables from Signals in Model

7-2

If you want to generate a global variable in your code, use a global Data Store Memory block based
ona Simulink.Signal object in your model.

Set up a data store in your model by using a Data Store Memory block.
2 Associate a Simulink.Signal object with the data store.

a In the base workspace, define a Simulink.Signal object with the same name as the data
store. Set the storage class of the object to ExportedGlobal or ImportedExtern.

b Use the Model Data Editor to enable the Data store name must resolve to Simulink
signal object parameter of the Data Store Memory block. To use the Model Data Editor in a
model, on the Modeling tab, select Model Data Editor under the Design category. On the
Data Stores tab, set the Change View drop-down to Design. Enable Resolve for the Data
Store Memory block. For more information, see “Configure Data Properties by Using the
Model Data Editor” .

3 In your model, attach the signals that you want to Data Store Read blocks that read from the data
store and Data Store Write blocks that write to the data store.

The Simulink.Signal object that is associated with the global Data Store Memory block appears as
a global variable in generated code.

Note If you follow this workflow for Rockwell Automation RSLogix 5000 AOIs, the generated code
uses INOUT variables for the global data.

Control Code Partitions for Subsystem Block

Control Code Partitions for Subsystem Block

Simulink PL.C Coder converts subsystems to function block units according to the following rules:

* Generates a function block for the top-level atomic subsystem for which you generate code.

* Generates a function block for an atomic subsystem whose Function packaging parameter is set
to Reusable function.

* Inlines generated code from atomic subsystems, whose Function packaging parameter is set to
Inline, into the function block that corresponds to the nearest ancestor subsystem. This nearest
ancestor cannot be inlined.

For code generation from a subsystem with no inputs or outputs, you must set the Function
packaging parameter of the block to Reusable function.

These topics use code generated with CoDeSys Version 2.3.

Control Code Partitions Using Subsystem Block Parameters

You can partition generated code using the following Subsystem block parameters on the Code
Generation tab. See the Subsystem block documentation for details.

* Function packaging
* Function name options

Leave the File name options set to the default, Auto.
Generating Separate Partitions and Inlining Subsystem Code
Use the Function packaging parameter to specify the code format to generate for an atomic

(nonvirtual) subsystem. The Simulink PLC Coder software interprets this parameter depending on the
setting that you choose:

Setting Coder Interpretation

Auto Uses the optimal format based on the type and
number of subsystem instances in the model.

Reusable function Generates a function with arguments that allows
reuse of subsystem code when a model includes
multiple instances of the subsystem.

Nonreusable function The Simulink PL.C Coder does not support
Nonreusable function packaging. See,
“Restrictions” on page 11-2.

Inline Inlines the subsystem unconditionally.

For example, in the plcdemo hierarchical virtual subsystem, you can:
» Inline the S1 subsystem code by setting Function packaging to Inline. This setting creates one
function block for the parent with the S1 subsystem inlined.

* Create a function block for the S2 subsystem by setting Function packaging to Reusable
function or Auto. This setting creates two function blocks, one for the parent, one for S2.

7 Controlling Generated Code Partitions

Block Parameters: 51 Block Parameters: 52

Subsystem Subsystem

Select the settings for the subsystem block. To enable parameters for Select the settings for the subsystem block. To enable parameters for

code generation, select 'Treat as atomic unit'. code generation, select 'Treat as atomic unit'.

Main Code Generation Main Code Generation

Function packaging: | Inline - || Function packaging: | Reusable function -
Function name options: |Auto ~
File name options: |Auto ~

Changing the Name of a Subsystem

You can use the Function name options parameter to change the name of a subsystem from the one
on the block label. When the Simulink PLC Coder generates software, it uses the string you specify
for this parameter as the subsystem name. For example, see

plcdemo hierarchical virtual subsystem:

Open the S1 subsystem block parameter dialog box.

If the Treat as atomic unit check box is not yet selected, select it.

Click the Code Generation tab.

Set Function packaging to Reusable function.

Set Function name options to User specified.

In the Function name field, specify a custom name. For example, type my own subsystem.

a1 A W N K

Block Parameters: 51 b4
Subsystem

Select the settings for the subsystem block. To enable parameters for code
generation, select 'Treat as atomic unit’.

Main Code Generation
Function packaging: Reusable function -

Function name options: | User specified -

Function name:

my_own_subsystem

File name options: | Auto -

Control Code Partitions for Subsystem Block

7 Save the new settings.
8 Generate code for the parent subsystem.

Observe the renamed function block.

FUNCTION BLOCK my own subsystem
VAR TINPUT

ssMethodType: SINT;

U: LEEAL;

MO VAR

One Function Block for Atomic Subsystems

The code for plcdemo _simple subsystemis an example of generating code with one function
block. The atomic subsystem for which you generate code does not contain other subsystems.

FUNCTION BLOCK SimpleSubsystem
VAR TNPUT

ssMethodType: SINT;

U: LEEAL;

VAR _OUTPUT

Y: LEEAL;

UnitDelay DSTATE: LREAL;

CASE ssMethodType OF

S5 _INITIALIZE:

UnitDelay DSTATE := 0.0;

S5_STEP:

Y := (U - UnitDelay DSTATE) * 0.5;

UnitDelay DSTATE := Y;

EMD CASE;
ENC 0N BLOCE
. GLOBAL CONSTANT

55 INITIALIZE: SINT := 0;
55 STEE: SINT := 1;
END VAR

One Function Block for Virtual Subsystems

The plcdemo _hierarchical virtual subsystem example contains an atomic subsystem that
has two virtual subsystems, S1 and S2, inlined. A virtual subsystem does not have the Treat as
atomic unit parameter selected. When you generate code for the hierarchical subsystem, the code
contains only the FUNCTION BLOCK HierarchicalSubsystem component. There are no additional
function blocks for the S1 and S2 subsystems.

7-3

7 Controlling Generated Code Partitions

FUNCTION BLOCK HierarchicalSubsystem

VAR TINPUT

ssMethodType: SINT;

Inl: LEEAL;
InZ: LEEAL;
In3: UINT:
Ind: LREEAL;
END VAR
VL ?._-C-U TFUT
Outl: LREAL;
QutZ: LEEAL;

END VAR
[RE
UnitDelayl DSTATE: LREAL;
UnitDelay DSTATE: LREAL;
UnitDelay DSTATE i: LREAL;
UnitDelay DSTATE a: LREAL;
END VAR
/AR TEMF
rtb_Gain_n: LREARL;
END VAR
CASE ssMethodType OF
35

INITIALIZE:

UnitDelayl DSTA

TE := (

P

a b p

Multiple Function Blocks for Nonvirtual Subsystems

The plcdemo_hierarchical subsystem example contains an atomic subsystem that has two
nonvirtual subsystems, S1 and S2. Virtual subsystems have the Treat as atomic unit parameter
selected. When you generate code for the hierarchical subsystem, that code contains the
FUNCTION BLOCK HierarchicalSubsystem, FUNCTION BLOCK S1, and FUNCTION BLOCK S2

components.

Control Code Partitions for Subsystem Block

Function block for Hierarchical Subsystem

FUNCTICN BLOCK HierarchicalSubsystem
VAR TNPUT
ssMethodType: SINT;
Inl: LREAL;
InZ: LRERL;
In3: UINT;
Ind: LREAL;
END VAR
Function block for 1
FUNCTION BLOCK 51
VAR INPUT
ssMethodType: SINT;
U: LEEAL;
END VAR
Function block for 52
FUNCTION BLOCK 52
VAR INPUT
ssMethodType: SINT;
U: LEEAL;
END VAR

7-7

7 Controlling Generated Code Partitions

Control Code Partitions for MATLAB Functions in Stateflow
Charts

Simulink PLC Coder inlines MATLAB functions in generated code based on your inlining
specifications. To specify whether to inline a function:

1 Right-click the MATLAB function and select Properties.

2 For Function Inline Option, select Inline if you want the function to be inlined. Select
Function if you do not want the function to be inlined. For more information, see “Specify
Properties of MATLAB Functions” (Stateflow).

However, Simulink PLC Coder does not follow your inlining specifications exactly in the following
cases:

» If a MATLAB function accesses data that is local to the chart, it is inlined in generated code even if
you specify that the function must not be inlined.

Explanation: The chart is converted to a function block in generated code. If the MATLAB function
in the chart is converted to a Structured Text function, it cannot access the data of an instance of
the function block. Therefore, the MATLAB function cannot be converted to a Structured Text
function in generated code and is inlined.

+ If a MATLAB function has multiple outputs and you specify that the function must not be inlined, it
is converted to a function block in generated code.

Explanation: A Structured Text function cannot have multiple outputs, therefore the MATLAB
function cannot be converted to a Structured Text function.

The following simple example illustrates the different cases. The model used here has a Stateflow
chart that contains four MATLAB functions fcnl to fcn4.

Here is the model.

Control Code Partitions for MATLAB Functions in Stateflow Charts

In1 QOut1
v2
- P u2 w out?
In2

o WO

In4 _ J outs

Chart

Here is the Stateflow chart.

7-9

7 Controlling Generated Code Partitions

.——h
=
1
[
—

A
entry: y1 =fcnt(ut);

B
entry: y2 = fcn2(u2);

C
entry: y3 = fcn3(u3);

D
entry: [y4.ya] = fcnd(ud);

The functions fcnl to fcn4 are defined as follows.

7-10

MATLAB Function
y =fen1{u)

MATLAB Function
y =fcn2(u)

MATLAE Function
y =fcn3(u)

MATLAB Function
[yy1,yy2] = fcnd(u)

Control Code Partitions for MATLAB Functions in Stateflow Charts

Function Inlining Specification |Generated Code
fcnl: Specify that the fcnl is inlined in the generated code.
_ function must be _
function y = fcnl(u) inlined. is ¢3 Chart := Chart IN A;
y = u+l; (* Outport: '<Root>/yl'
incorporates:
* TInport: '<Root>/ul' *)
(* Entry 'A': '<S1>:10"' *)
(* MATLAB Function 'fcnl':
'<S1>:1"' *)
(* '<S1>:1:3' *)
yl :=ul + 1.0;
fcn2: Specify that the fcn2 is not inlined in the generated code

function y = fcn2(u)
y = u+2;

function must not be
inlined.

is c3 Chart := Chart IN B;

(* Outport: '<Root>/y2'
incorporates:

* Inport: '<Root>/u2' *)

(* Entry 'B': '<S1>:11' *)

y2 := fcn2(u := u2);

FUNCTION fcn2: LREAL
VAR INPUT

u: LREAL;
END VAR
VAR TEMP
END_ VAR
(* MATLAB Function 'fcn2':

'<S1>:4"' *)

(* '<S1>:4:3' *)
fcn2 :=u + 2.0;
END FUNCTION

fcn3:

function y = fcn3(u)

% The function accesses
% local data x of

% parent chart

y = u+3+X;

Specify that the
function must not be
inlined.

fcn3 is inlined in the generated code
because it accesses local data from the
Stateflow chart.

is ¢3 Chart := Chart IN C;
(* Outport: '<Root>/y3'
incorporates:
* TInport: '<Root>/u3' *)
(* Entry 'C': '<S1>:15' *)
(* MATLAB Function 'fcn3':
'<S1>:9' *)
(* The function accesses
local data x of parent
chart *)
(* '<S1>:9:4' *)
y3 := (u3 + 3.0) + Xx;

7-11

7 Controlling Generated Code Partitions

Function Inlining Specification |Generated Code
fcn4: Specify that the fcn4 is converted to a function block in
_ function must not be the generated code because it has
function [yyl,yy2] = inlined. multiple outputs.
fcnd(u)
yyl = u+4; is c3 Chart := Chart IN D;
yy2 = u+5; (* Entry 'D': '<S1>:28' *)

i0 fcnd(u := u4);

b y4 := 10 _fcn4d.yyl;

b y5 := 10 _fcn4d.yy2;

(* Outport: '<Root>/y4'

incorporates:
* TInport: '<Root>/u4' *)
y4 = b y4;
(* Outport: '<Root>/y5' *)

y5 := b _y5;

FUNCTION BLOCK fcn4
VAR INPUT
u: LREAL;
END VAR
VAR OUTPUT
yyl: LREAL;
yy2: LREAL;
END VAR
VAR
END VAR
VAR TEMP
END_ VAR
(* MATLAB Function 'fcn4':
'<S1>:26"' *)
(* '<S1>:26:3"' *)
yyl (= u + 4.0;
(* '<S1>:26:4' *)
yy2 :=u + 5.0;
END FUNCTION BLOCK

7-12

Integrating Externally Defined
Identifiers

* “Integrate Externally Defined Identifiers” on page 8-2
* “Integrate Custom Function Block in Generated Code” on page 8-3

8 Integrating Externally Defined Identifiers

Integrate Externally Defined Identifiers

The coder allows you to suppress identifier (symbol) definitions in the generated code. This
suppression allows you to integrate a custom element, such as user-defined function blocks, function
blocks, data types, and named global variable and constants, in place of one generated from a
Simulink subsystem. You must then provide these definitions when importing the code into the target
IDE. You must:

* Define the custom element in the subsystem for which you want to generate code.

¢ Name the custom element.

* In the Configuration Parameters dialog box, add the name of the custom element to PLC Code
Generation > Identifiers > Externally Defined Identifiers in the Configuration Parameters
dialog box.

* Generate code.

For a description of how to integrate a custom function block, see “Integrate Custom Function Block
in Generated Code” on page 8-3. For a description of the Externally Defined Identifiers
parameter, see “Externally Defined Identifiers” on page 12-27.

8-2

Integrate Custom Function Block in Generated Code

Integrate Custom Function Block in Generated Code

To integrate a custom function block, ExternallyDefinedBlock, this procedure uses the example
plcdemo external symbols.
1 In a Simulink model, add a MATLAB Function block.
2 Double-click the MATLAB Function block.
3 In the MATLAB editor, minimally define inputs, outputs, and stubs. For example:
function Y = fcn(U,V)
Stub behavior for simulation. This block

is replaced during code generation
Y=U+V;

4 Change the MATLAB Function block name to ExternallyDefinedBlock.
Create a subsystem from this MATLAB Function block.
Complete the model to look like plcdemo_external symbols.

)
‘%
)

“©

Subsystem

RN

fnl> U
(3 i

" ah 5
In1 Ackd Ten ’ ?l""a__‘—._a—\.
e L L . - L —
T

_ s ExtamallyDefinedBlock

Unit Dalay

7 Open the Configuration Parameters dialog box for the model.

Add ExternallyDefinedBlock to PLC Code Generation > Identifiers > Externally
Defined Identifiers.

9 The plcdemo _external symbols model also suppresses K1 and InBus. Add these symbol
names to the Externally Defined Identifiers field, separated by spaces or commas. For other
settings, see the plcdemo_external symbols model.

8-3

matlab:plcdemo_external_symbols
matlab:plcdemo_external_symbols

8 Integrating Externally Defined Identifiers

Externally Defined Symbols

ExternallyDefinedBlock InBus K1

10 Save and close your new model. For example, save it as plcdemo_external symbols mine.
11 Generate code for the model.
12 [n the generated code, look for instances of ExternallyDefinedBlock.

The reference of ExternallyDefinedBlock is:

VAR

UnitDelay DSTATE: LEEAL;

i0 ExternallyDefinedBlock: ExternallyDefinedBlock;
END VAR

The omission of ExternallyDefinedBlock is:

(* MATLAER Function: '"<51>/ExternallyDefinedBlock' *)
i0 ExternallyDefinedBlock(J := rtb Add, V := rtb_ Addl};
rtb ¥ := i0 ExternallyDefinedBlock.¥;

IDE-Specific Considerations

* “Integrate Generated Code with Siemens IDE Project” on page 9-2

* “Use Internal Signals for Debugging in RSLogix 5000 IDE” on page 9-3
* “Rockwell Automation RSLogix Requirements” on page 9-4

* “Siemens IDE Requirements” on page 9-6

» “Selectron CAP1131 IDE Requirements” on page 9-8

9

IDE-Specific Considerations

Integrate Generated Code with Siemens IDE Project

9-2

You can integrate generated code with an existing Siemens SIMATIC STEP 7 or Siemens TIA Portal
project. For more information on:

» How to generate code, see “Generate and Examine Structured Text Code” on page 1-9.

» The location of generated code, see “Files Generated by Simulink PLC Coder” on page 1-14.

Integrate Generated Code with Siemens SIMATIC STEP 7 Projects

1 In the Siemens SIMATIC STEP 7 project, right-click the Sources node and select Insert New
Object > External Source.

2 Navigate to the folder containing the generated code and open the file.
The custom file name unless assigned differently, is the model name.scl. After you open the
file, a new entry called model name.scl appears under the Sources node.

3 Double-click the new entry. The generated code is listed in the SCL editor window.
In the SCL editor window, select Options > Customize.

5 In the customize window, select Create block numbers automatically, and click OK.

Symbol addresses are automatically generated for Subsystem blocks.
6 In the SCL editor window, compile the model name.scl file for the Subsystem block.

The new Function Block is now integrated and available for use with the existing Siemens SIMATIC
STEP 7 project.

Integrate Generated Code with Siemens TIA Portal Projects

1 In the Project tree pane, on the Devices tab, under the External source files node in your
project, select Add new external file.

2 Navigate to the folder containing the generated code and open the file.

The custom file name unless assigned differently, is the model name.scl. After you open the
file, a new entry called model name.scl appears under the External source files node.

3 Right-click the new entry and select Generate blocks from source.
The Siemens TIA Portal IDE compiles the new file and generates TIA Portal program blocks from

the code. The program blocks appear under the Program blocks node. They are available for
use with the existing Siemens TIA Portal project.

Use Internal Signals for Debugging in RSLogix 5000 IDE

Use Internal Signals for Debugging in RSLogix 5000 IDE

For debugging, you can generate code for test point outputs from the top-level subsystem of your
model. The coder generates code that maps the test pointed output to optional AOI output
parameters for RSLogix 5000 IDEs. In the generated code, the variable tags that correspond to the
test points have the property Required=false. This example assumes that you have a model
appropriately configured for the coder, such as plcdemo _simple subsystem.

1 Openthe plcdemo _simple subsystem model.

plcdemo simple subsystem

2 In the Configuration Parameters dialog box, set Target IDE to Rockwell RSLogix 5000:
AOI.

3 In the top-level subsystem of the model, right-click the output signal of SimpleSubsystem and
select Properties.
The Signal Properties dialog box is displayed.

4 On the Logging and accessibility tab, click the Test point check box.

Signal Properties: >
g P

Signal name: |

Signal name must resolve to Simulink signal object
[[] show propagated signals
Logging and accessibility = Code Generation = Documentation
[Log signal data [~ Test point
Logging name

Use signal name

Cancel Help Apply

5 Click OK.
Generate code for the top-level subsystem.
7 Inspect the generated code for the string Required=false.

For more information on signals with test points, see “What Is a Test Point?”.

9-3

9

IDE-Specific Considerations

Rockwell Automation RSLogix Requirements

9-4

Following are considerations for this target IDE platform.

Add-On Instruction and Function Blocks

The Structured Text concept of function block exists for Rockwell Automation RSLogix target IDEs as
an Add-On instruction (AOI). The Simulink PLC Coder software generates the AOIs for Add-On
instruction format, but not FUNCTION BLOCK.

Double-Precision Data Types

The Rockwell Automation RSLogix target IDE does not support double-precision data types. At code
generation, Simulink PLC Coder converts this data type to single-precision data types in generated
code.

Design your model to use single-precision data type (single) as much as possible instead of double-
precision data type (double). If you must use doubles in your model, the numeric results produced by
the generated Structured Text can differ from Simulink results. This difference is due to double-single
conversion in the generated code.

Unsigned Integer Data Types

The Rockwell Automation RSLogix target IDE does not support unsigned integer data types. At code
generation, Simulink PLC Coder converts this data type to signed integer data types in generated
code.

Design your model to use signed integer data types (int8, int16, int32) as much as possible instead of
unsigned integer data types (uint8, uint16, uint32). Doing so avoids overflow issues that unsigned-to-
signed integer conversions can cause in the generated code.

Unsigned Fixed-Point Data Types

In the generated code, Simulink PLC Coder converts fixed-point data types to target IDE integer data
types. Because the Rockwell Automation RSLogix target IDE does not support unsigned integer data
types, do not use unsigned fixed-point data types in the model. For more information about coder
limitations for fixed-point data type support, see “Fixed Point Simulink PLC Coder Structured Text
Code Generation” on page 19-2.

Enumerated Data Types
The Rockwell Automation RSLogix target IDE does not support enumerated data types. At code

generation, Simulink PLC Coder converts this data type to 32-bit signed integer data type in
generated code.

Reserved Keywords

The Rockwell AutomationRSLogix target IDE has reserved keywords. Do not use them as tag names
in subsystems from which code will be for be generated for Rockwell AutomationRSLogix IDE.

Rockwell Automation RSLogix Requirements

ABS ACS AND ASN ATN COS DEG FRD LN LOG MOD
NOT OR RAD SIN SQR TAN TOD TRN XOR acos asin

atan by case do else elsif end cas |end for |end if |end rep|end wh
e eat ile
exit for if of repeat |return |then to trunc |until while

These keywords are case insensitive. If your code generation target IDE is the Rockwell
AutomationRSLogix 5000 or Studio 5000 IDE do not use these keywords as variable names.

Rockwell Automation IDE selection

Based on the L5X import file target IDE version you will choose the PLC target IDE to be
RSLogix5000 or Studio 5000. If importing into v24 or later choose Studio 5000 else for versions prior
to v24 choose RSLogix 5000.

9

IDE-Specific Considerations

Siemens IDE Requirements

9-6

Target PLCs and Supported Data Types

To choose your target PLC based on supported data types, see the options in this table.

Data Type $7-300/400 S$7-1200 S$7-1500
BOOL Yes Yes Yes
BYTE Yes Yes Yes
WORD Yes Yes Yes
DWORD Yes Yes Yes
LWORD No No Yes
SINT No Yes Yes
INT Yes Yes Yes
DINT Yes Yes Yes
USINT No Yes Yes
UINT No Yes Yes
UDINT No Yes Yes
LINT No No Yes
ULINT No No Yes
REAL Yes Yes Yes
LREAL No Yes Yes

To generate code for your S7-300/400 series PLCs use the SIMATIC STEP 7 or TIA Portal as the
target IDE.. To generate code for your S7-1200 or S7-1500 series PLCs, use the TIA Portal: Double
Precision as the target IDE .

Double-Precision Floating-Point Data Types

To generate code for your Siemens targets that do not support double-precision, floating-point data
types, use the SIMATIC STEP 7 or TIA Portal as the target IDE. At code generation, Simulink PLC
Coder converts this data type to single-precision real data types in the generated code. Design your
model so that the possible precision loss of generated code numeric results does not change the
expected semantics of the model.

To generate code for your Siemens targets that support double-precision, floating-point types, use
Siemens TIA Portal: Double Precision as the target IDE. The generated code uses the LREAL type for
double-precision, floating-point types in the model. For more information, see “Target IDE” on page
12-3.

int8 Data Type and Unsigned Integer Types

To generate code for your Siemens targets that do not support the int8 data type and unsigned
integer data types, use Siemens SIMATIC Step 7 or Siemens TIA Portal as the target IDE. At code

Siemens IDE Requirements

generation, Simulink PLC Coder converts the int8 data type and unsigned integer data types to int16
or int32 in the generated code.

Design your model to use int16 and int32 data types as much as possible instead of int8 or unsigned
integer data types. The Simulink numeric results by using the int8 data type or unsigned integer data
types can differ from the numeric results produced by the generated structured text.

Design your model so that the effects of integer data type conversion of the generated code do not
change the expected semantics of the model.

To generate code for your Siemens targets that support the int8 data type and unsigned integer data
types, use Siemens TIA Portal: Double Precision as the target IDE. The generated code preserves the
int8 data type and unsigned integer data types. For more information, see “Target IDE” on page 12-
3.

Unsigned Fixed-Point Data Types

Do not use unsigned, fixed-point data types in your model to generate code for your Siemens targets
that do not support unsigned integer data types. For more information about coder limitations for
fixed-point data type support, see “Fixed Point Simulink PLC Coder Structured Text Code Generation”
on page 19-2.

Enumerated Data Types

The Siemens SIMATIC STEP 7 and TIA Portal target IDEs do not support enumerated data types.
Simulink PLC Coder converts this data type to 16-bit signed integer data type in the generated code
for Siemens targets.

9

IDE-Specific Considerations

Selectron CAP1131 IDE Requirements

9-8

For the Selectron CAP1131 target IDE platform, consider these limitations:

Double-Precision Floating-Point Data Types
The Selectron CAP1131 target IDE does not support double-precision floating-point data types. At
code generation, the Simulink PLC Coder converts this data type to single-precision real data types in

the generated code. Design your model so that the possible precision loss of numerical results of the
generated code numeric results does not change the model semantics that you expect.

Enumerated Data Types

The Selectron CAP1131 target IDE does not support enumerated data types. The Selectron CAP1131
IDE converts this data type to 32-bit signed integer data type in the generated code.

See Also

Supported Simulink and Stateflow
Blocks

10 Supported Simulink and Stateflow Blocks

Supported Blocks
For Simulink semantics not supported by Simulink PLC Coder, see “Structured Text Code Generation
Limitations” on page 11-2.
View Supported Blocks Library

To view a Simulink library of blocks that the Simulink PLC Coder software supports, type plclib in
the Command Window. The coder can generate Structured Text code for subsystems that contain

these blocks. The library window is displayed.

L plclib - Simulink - m| 3
File Edit Wiew Display Diagram Simulation Analysis Code Tools =
- TE e »| EHE s () [|[> R = 5
22 - 3 o @ ¢ > » 0 7| e
Model Browser = plclit
v [%a piciib © |Palpicio » v
» |Pa| Simulink
”
> |Pa| Statefiow &
£3]
— Simulink
()
] Stateflow
(i
W
« |, 3
Ready 100% FixedStepDiscrete

This library contains two sublibraries, Simulink and Stateflow. Each sublibrary contains the blocks
that you can include in a Simulink PLC Coder model.

Supported Simulink Blocks

The coder supports the following Simulink blocks.
Additional Math & Discrete/Additional Discrete
Transfer Fcn Direct Form II

Transfer Fcn Direct Form II Time Varying

10-2

Supported Blocks

Unit Delay Enabled (Obsolete)

Unit Delay Enabled External IC (Obsolete)

Unit Delay Enabled Resettable (Obsolete)

Unit Delay Enabled Resettable External IC (Obsolete)
Unit Delay External IC (Obsolete)

Unit Delay Resettable (Obsolete)

Unit Delay Resettable External IC (Obsolete)

Unit Delay With Preview Enabled (Obsolete)

Unit Delay With Preview Enabled Resettable (Obsolete)
Unit Delay With Preview Enabled Resettable External RV (Obsolete)
Unit Delay With Preview Resettable (Obsolete)

Unit Delay With Preview Resettable External RV (Obsolete)
Commonly Used Blocks

Inport

Bus Creator

Bus Selector

Constant

Data Type Conversion

Demux

Discrete-Time Integrator

Gain

Ground

Logical Operator

Mux

Product

Relational Operator

Saturation

Scope

Subsystem

10-3

10 Supported Simulink and Stateflow Blocks

Inport

Outport

Sum

Switch

Terminator

Unit Delay
Discontinuities
Coulomb and Viscous Friction
Dead Zone Dynamic
Rate Limiter

Rate Limiter Dynamic
Relay

Saturation

Saturation Dynamic
Wrap To Zero

Discrete

Difference

Discrete Transfer Fcn
Discrete Derivative
Discrete FIR Filter
Discrete Filter

Discrete PID Controller
Discrete PID Controller (2 DOF)
Discrete State-Space
Discrete-Time Integrator
FIR Interpolation
Integer Delay

Memory

Tapped Delay

10-4

Supported Blocks

Transfer Fcn First Order
Transfer Fcn Lead or Lag
Transfer Fcn Real Zero
Unit Delay

Zero-Order Hold

Logic and Bit Operations
Bit Clear

Bit Set

Bitwise Operator
Compare To Constant
Compare To Zero

Detect Change

Detect Decrease

Detect Increase

Detect Fall Negative
Detect Fall Nonpositive
Detect Rise Nonnegative
Detect Rise Positive
Extract Bits

Interval Test

Interval Test Dynamic
Logical Operator

Shift Arithmetic

Lookup Tables
Dynamic-Lookup
Interpolation Using Prelookup
PreLookup

n-D Lookup Table

10-5

10 Supported Simulink and Stateflow Blocks

Math Operations
Abs

Add

Assignment

Bias

Divide

Dot Product

Gain

Math Function
Matrix Concatenate
MinMax

MinMax Running Resettable
Permute Dimensions
Polynomial

Product

Product of Elements
Reciprocal Sqrt
Reshape

Rounding Function
Sign

Slider Gain

Sqrt

Squeeze

Subtract

Sum

Sum of Elements
Trigonometric Function
Unary Minus

Vector Concatenate

10-6

Supported Blocks

Model Verification
Assertion

Check Discrete Gradient
Check Dynamic Gap
Check Dynamic Range
Check Static Gap

Check Static Range

Check Dynamic Lower Bound
Check Dynamic Upper Bound
Check Input Resolution
Check Static Lower Bound
Check Static Upper Bound
Model-Wide Utilities
DocBlock

Model Info

Ports & Subsystems
Atomic Subsystem
CodeReuse Subsystem
Enabled Subsystem
Enable

Function-Call Subsystem
Subsystem

Inport

Outport

Signal Attributes

Data Type Conversion
Data Type Duplicate

Signal Conversion

10-7

10 Supported Simulink and Stateflow Blocks

Signal Routing
Bus Assignment
Bus Creator

Bus Selector

Data Store Memory
Demux

From

Goto

Goto Tag Visibility
Index Vector
Multiport Switch
Mux

Selector

Sinks

Display

Floating Scope
Scope

Stop Simulation
Terminator

To File

To Workspace

XY Graph

Sources

Constant

Counter Free-Running
Counter Limited
Enumerated Constant
Ground

Pulse Generator

10-8

Supported Blocks

Repeating Sequence Interpolated
Repeating Sequence Stair
User-Defined Functions

MATLAB Function (MATLAB Function Block)

Supported Stateflow Blocks

The coder supports the following Stateflow blocks.
Stateflow

Chart

State Transition Table

Truth Table

Blocks with Restricted Support
Simulink Block Support Exceptions

The Simulink PLC Coder software supports the plclib blocks with the following exceptions. Also,
see “Structured Text Code Generation Limitations” on page 11-2 for a list of limitations of the
software.

If you get unsupported fixed-point type messages during code generation, update the block
parameter. Open the block parameter dialog box. Navigate to the Signal Attributes and Parameter
Attributes tabs. Check that the Output data type and Parameter data type parameters are not
Inherit: Inherit via internal rule. Set these parameters to either Inherit: Same as
input or a desired non-fixed-point data type, such as double or int8.

Stateflow Chart Exceptions

If you receive a message about consistency between the original subsystem and the S-function
generated from the subsystem build, and the model contains a Stateflow chart that contains one or
more Simulink functions, use the following procedure to address the issue:

1 Open the model and double-click the Stateflow chart that causes the issue.
The chart Stateflow Editor dialog box is displayed.

Right-click in this dialog box.
3 In the context-sensitive menu, select Properties.

The Chart dialog box is displayed.
4 In the Chart dialog box, navigate to the States When Enabling parameter and select Held.
Click Apply and OK and save the model.

10-9

10 Supported Simulink and Stateflow Blocks

10-10

Data Store Memory Block

To generate PLC code for a model that uses a Data Store Memory block, first define a
Simulink.Signal object in the base workspace. Then, in the Signal Attributes tab of the block
parameters, set the data store name to resolve to that Simulink.Signal object.

For more information, see “Data Stores with Data Store Memory Blocks”.
Reciprocal Sqrt Block

The Simulink PLC Coder software does not support the Simulink Reciprocal Sqrt block signedSqrt
and rSqrt functions.

Lookup Table Blocks

Simulink PLC Coder has limited support for lookup table blocks. The coder does not support:

* Number of dimensions greater than 2

* Cubic spline interpolation method

* Begin index search using a previous index mode
* Cubic spline extrapolation method

Note The Simulink PLC Coder software does not support the Simulink Lookup Table Dynamic block.
For your convenience, the plclib/Simulink/Lookup Tables library contains an implementation of a
dynamic table lookup block using the Prelookup and Interpolation Using Prelookup blocks.

Limitations

* “Structured Text Code Generation Limitations” on page 11-2
* “Ladder Logic Code Generation Limitations” on page 11-4

11 Limitations

Structured Text Code Generation Limitations

11-2

General Limitations

The Simulink PLC Coder software does not support:

* Complex data types

* String data types

* Model reference blocks

* Stateflow machine-parented data and events
* Stateflow messages

* Limited support for math functions

* Merge block

» Step block

* Clock block

» Signal and state storage classes

* Shared state variables between subsystems
* For Each Subsystem block

* Variable-size signals and parameters

* MATLAB System block or system obhjects

* MATLAB classes.

* The Simulink.CoderInfo Identifier name property with Simulink.Parameter and
Simulink.Signal objects.

* The Simulink.LookupTable, Simulink.Breakpoint, and
Simulink.DualScaledParameter objects.

* Code generation for Simulink signals that do not resolve to a Simulink.Signal data store
memory object.

* Code generation when UseRowMajorAlgorithm="'on".

* The use of enum datatype numeric values for comparison inside model subsystem blocks. Use a
data type conversion block to perform an enum to integer conversion, to perform the numeric
comparison.

* The use of special characters in comments. This could lead to errors when importing the
generated code.

* Signal lines named using Simulink.Signal mappings.

* Half precision fixed-point data types.

» Testbench generation for models using software-in-the-loop (SIL) simulation mode.
* Testbench generation for models using processor-in-the-loop (PIL) simulation mode.

Restrictions

The structured text language has inherent restrictions. As a result, the Simulink PLC Coder software
has these restrictions:

Structured Text Code Generation Limitations

» Supports code generation only for atomic subsystems.

* Supports automatic, inline, or reusable function packaging for code generation. Nonreusable
function packaging is not supported.

* Does not support blocks that require continuous time semantics. This restriction includes
integrator blocks, zero-crossing detection blocks, physical blocks, such as Simscape™ library
blocks and so on.

* Does not support pointer data types.

* Does not support recursion (including recursive events).
* Does not support nonfinite data, for example NaN or Inf.
* Does not support MATLAB 64-bit integer data types.

Negative Zero

In a floating-point data type, the value 0 has either a positive sign or a negative sign. Arithmetically, 0
is equal to -0, but some operations are sensitive to the sign of a 0 input. Examples include rdivide,
atan2, atan2d, and angle. Division by 0 produces Inf, but division by -0 produces - Inf. Similarly,
atan2d (0, -1) produces 180, but atan2d (-0, -1) produces -180.

Simulink PLC Coder stores -0 as @ because there is no representation of -0 in IEC61131.This leads
to division by -0 producing - Inf in Simulink, but Inf in PLC IDE. Similarly, atan2d (-0, -1)
produces - 180 in Simulink, but 180 in PLC IDE as the -0 is converted to 0.

Divide by Zero

In Simulink, division by zero produces either Inf or the largest number for the data type. In the
Codesys target IDE, division by zero results in a - 1. Code generation by using a testbench might
result in testbench verification failures due to a difference in results from divide by zero operations.

Fixed-Point Data Type Multiword Operations

Simulink PLC Coder does not support code generation for block parameter settings that require
fixed-point data type multiword operations. For example, the square root block that has int32 integer
data type as input and output data type setting of Inherit via internal rule is not supported
for code generation.

11-3

11 Limitations

Ladder Logic Code Generation Limitations

11-4

plcladderlib Limitations

Simulink PL.C Coder plcladderlib has these limitations:

Only Rockwell Automation RSLogix 5000 and Studio 5000 IDEs can import ladder logic generated
using the plcladderlib library.

Ladder Diagram Import Limitations

When importing an . L5X file that contains a continuous task, the imported Simulink model has a
sample time of - 1. For periodic tasks, the sample time is the value specified in the .L5X file. Event
tasks are not supported.

Simulink PLC Coder may not follow the same initialization order specified in the Prescan mode.
Do not read variables that are read by the Prescan mode because this leads to different behavior
in simulation of the model when compared to execution in the IDE. The affected Simulink PLC
Coder plcladderlib blocks are: OTE, ONS, OSF, OSR, CTD, CTU, TON, TOF, RTO, JSR, AOI, and
FBC

If you Ladder Diagram implementation has multiple AOI or subroutine instances with the same
name, the software does not check if these instances refer to the same implementation. It is
recommended to use different names if these structures contain different functionality.

Ladder Diagram Modeling and Simulation Limitations

Ladder models do not support unsigned integer types. Use signed integer instead.
Ladder models do not support double type. Instead, use single type.

The Rockwell Automation IDEs have limitations on the character length used for names. The
length should not be more than 40 characters. For supported name lengths consult the Rockwell
documentation.

Label the Port numbers in the Controller Tags uniquely and sequentially, when modeling Ladder
Diagrams in Simulink.

Ladder Diagram Code Generation Limitations

Code generation requires a controller, task, program model, AOI runner, or AOI model hierarchy

AOI input argument should be either non-array or 1-D array type. Test bench generation does not
support 2-D or 3-D array types. This limitation includes nested 2-D, 3-D array types in structure
fields.

The Rockwell Automation IDEs have limitations on the character length used for names. The
length should not be more than 40 characters. For supported name lengths consult the Rockwell
documentation.

Ladder Diagram Verification Limitations

Ladder test bench generation is supported for only AOI Runner block.

Ladder Logic Code Generation Limitations

* AOI input argument should be either non-array or 1-D array type. Test bench generation does not
support 2-D or 3-D array types. This limitation includes nested 2-D, 3-D array types in structure
fields.

* AOI input argument in the L5X file should not be single-element array type for runner test bench
generation.

» Test bench generation for Ladder Diagram models containing timer blocks such as TON, TOF and
RTO fails. To generate test-bench code for these models, modify the Ladder Diagram structure
while maintaining the logic.

» If the Simulink model is set as read-only, the model can become corrupted during the test bench

generation process. When the code generation process completes, it reverts all code generation
changes performed on the model. You can ignore or close the model during this process.

“Generating Ladder Diagram Code from Simulink” on page 3-34 | “Import L5X Ladder Files into
Simulink” on page 3-22 | “Modeling and Simulation of Ladder Diagrams in Simulink” on page 3-27 |
“Verify Generated Ladder Diagram Code” on page 3-38

11-5

Configuration Parameters for Simulink
PLC Coder Models

* “PLC Coder: General” on page 12-2
+ “PLC Coder: Comments” on page 12-12
* “PLC Coder: Optimization” on page 12-15
» “PLC Coder: Identifiers” on page 12-22
* “PLC Coder: Report” on page 12-29
“PLC Coder:Interface” on page 12-32

12 Configuration Parameters for Simulink PLC Coder Models

PLC Coder: General

& Configuration Parameters: simple_subsystem/Configuration (Active] - O X
Solver General options

Data Import/Export
Math and Data Types
Diagnostics +| Show full target list
Hardware Implementation
Model Referencing
Simulation Target

» Code Generation +| Generate testbench for subsystem
» Coverage

» HDL Code Generation
» Design Verifier

¥ PLC Code Generation

Target IDE: Phoenix Contact PC WORX 6.0 -

-

Target IDE Path: C:\Program Files\Phoenix Contact\Software Suite 150
Code Output Directory: | /plcsrc

Include testbench diagnostic code

Target specific options

Comments Generate functions instead of function block
Optimization Emit Datatype worksheet tags

Identifizrs - . -

Report uppress auto-generated data types

OK Cancel Help Apply

In this section...

“PLC Coder: General Tab Overview” on page 12-2

“Target IDE” on page 12-3

“Show Full Target List” on page 12-5

“Target IDE Path” on page 12-6

“Code Output Directory” on page 12-7

“Generate Testbench for Subsystem” on page 12-7

“Include Testbench Diagnostic Code” on page 12-8
“Generate Functions Instead of Function Block” on page 12-8
“Allow Functions with Zero Inputs” on page 12-9

“Suppress Auto-Generated Data Types” on page 12-10

“Emit Data type Worksheet Tags for PCWorx” on page 12-10
“Aggressively Inline Structured Text Function Calls” on page 12-11

PLC Coder: General Tab Overview

Set up general information about generating Structured Text code to download to target PLC IDEs.

12-2

PLC Coder: General

Configuration
To enable the Simulink PLC Coder options pane, you must:

Create a model.

2 Add either an Atomic Subsystem block, or a Subsystem block for which you have selected the
Treat as atomic unit check box.

3 Right-click the subsystem block and select PLC Code > Options.
Tip

* In addition to configuring parameters for the Simulink PL.C Coder model, you can also use this
dialog box to generate Structured Text code and test bench code for the Subsystem block.

* Certain options are target-specific and are displayed based on the selection for Target IDE.
See Also
“Prepare Model for Structured Text Generation” on page 1-3

“Generate Structured Text from the Model Window” on page 1-9

Target IDE

Select the target IDE for which you want to generate code. This option is available in the
Configuration Parameters dialog box, PLC Code Generation pane.

The default Target IDE list shows the full set of supported targets. See “Show Full Target List” on
page 12-5.

To see a reduced subset of targets, clear the option Show full target list. To customize this list and
specify IDEs that you use more frequently, use the plccoderpref function.

For version numbers of supported IDEs, see “Supported IDE Platforms”.
Settings
Default: 3S CoDeSys 2.3

3S CoDeSys 2.3

Generates Structured Text (IEC 61131-3) code for 3S-Smart Software Solutions CoDeSys Version
2.3.

3S CoDeSys 3.3

Generates Structured Text code in PLCopen XML for 3S-Smart Software Solutions CoDeSys
Version 3.3.

3S CoDeSys 3.5

Generates Structured Text code in PLCopen XML for 3S-Smart Software Solutions CoDeSys
Version 3.5.

B&R Automation Studio 3.0

Generates Structured Text code for B&R Automation Studio 3.0.
B&R Automation Studio 4.0

Generates Structured Text code for B&R Automation Studio 4.0.

12-3

12 Configuration Parameters for Simulink PLC Coder Models

12-4

Beckhoff TwinCAT 2.11

Generates Structured Text code for Beckhoff TwinCAT 2.11 software.
Beckhoff TwinCAT 3

Generates Structured Text code for Beckhoff TwinCAT 3 software.
KW-Software MULTIPROG 5.0

Generates Structured Text code in PLCopen XML for PHOENIX CONTACT (previously KW)
Software MULTIPROG 5.0 or 5.50.

Phoenix Contact PC WORX 6.0
Generates Structured Text code in PLCopen XML for Phoenix Contact PC WORX 6.0.
Rockwell RSLogix 5000: AOI

Generates Structured Text code for Rockwell Automation RSLogix 5000 using Add-On Instruction
(AOI) constructs.

Rockwell RSLogix 5000: Routine
Generates Structured Text code for Rockwell Automation RSLogix 5000 routine constructs.
Rockwell Studio 5000: AOI

Generates Structured Text code for Rockwell Automation Studio 5000 Logix Designer using Add-
On Instruction (AOI) constructs.

Rockwell Studio 5000: Routine

Generates Structured Text code for Rockwell Automation Studio 5000 Logix Designer routine
constructs.

Siemens SIMATIC Step 7

Generates Structured Text code for Siemens SIMATIC STEP 7.
Siemens TIA Portal

Generates Structured Text code for Siemens TIA Portal S7-300/400 CPUs.
Siemens TIA Portal: Double Precision

Generates Structured Text code for Siemens TIA Portal S7-1200 and S7-1500 CPUs. THE IDE also
supports the int8 data type, unsigned integer data types, and double-precision, floating-point data
types. The code uses LREAL type for double data type in the model and can be used on Siemens
PLC devices that support the LREAL type.

Generic

Generates a pure Structured Text file. If the target IDE that you want is not available for the
Simulink PLC Coder product, consider generating and downloading a generic Structured Text file.

PLCopen XML
Generates Structured Text code formatted using PLCopen XML standard.
Rexroth Indraworks
Generates Structured Text code for Rexroth IndraWorks version 13V12 IDE.
OMRON Sysmac Studio
Generates Structured Text code for OMRON® Sysmac® Studio Version 1.04, 1.05, or 1.09.
Selectron CAP1131
Generates Structured Text code for Selectron CAP1131 v 11 IDE.

PLC Coder: General

Tips
* Rockwell Automation RSLogix 5000 routines represent the model hierarchy using hierarchical
user-defined types (UDTs). UDT types preserve model hierarchy in the generated code.

* The coder generates code for reusable subsystems as separate routine instances. These
subsystems access instance data in program tag fields.

Command-Line Information

Parameter: PLC TargetIDE

Type: string

Value: 'codesys23' | 'codesys33' | 'codesys35' | 'rslogix5000" |

'rslogix5000 routine' | 'studio5000' | 'studio5000 routine' | 'brautomation30' |

"brautomationd40' | 'multiprog50' | 'pcworx60' | 'step7' | 'plcopen’' | 'twincat21l' |
"twincat3' | 'generic' | 'indraworks' | 'omron' | 'tiaportal’' | 'tiaportal double'

Default: 'codesys23'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Show Full Target List

View the full list of supported target IDEs in the Target IDE drop-down list. For more information,
see“Target IDE” on page 12-3. This option is available on the PLC Code Generation pane in the
Configuration Parameters dialog box.

Settings

Default: On

Y/ On
The Target IDE list displays the full set of supported IDEs. For more information, see “Supported
IDE Platforms”.

Off

The Target IDE list displays only the more commonly used IDEs. The default subset contains the
following IDEs:

* codesys23 — 3S-Smart Software Solutions CoDeSys Version 2.3 (default) target IDE

¢ studio5000 — Rockwell Automation Studio 5000 Logix Designer target IDE for AOI format
* step7 — Siemens SIMATIC STEP 7 target IDE

* omron — OMRON Sysmac Studio

* plcopen — PLCopen XML target IDE

You can customize the entries in the reduced Target IDE list by using the plccoderpref
function.

Command-Line Information
Parameter: PLC ShowFullTargetList
Type: string

Value: 'on' | 'off'

12-5

12 Configuration Parameters for Simulink PLC Coder Models

Default: 'on'

You can change the contents of the reduced Target IDE list using the plccoderpref function. See
plccoderpref.

Target IDE Path

Specify the target IDE installation path. The path already specified is the default installation path for
the target IDE. Change this path if your IDE is installed in a different location. This option is available
on the PLC Code Generation pane in the Configuration Parameters dialog box.

Settings
Default: C:\Program Files\3S Software

C:\Program Files\3S Software

Default installation path for 3S-Smart Software Solutions CoDeSys software Version 2.3.
C:\Program Files\3S CoDeSys

Default installation path for 3S-Smart Software Solutions CoDeSys software Version 3.3 and 3.5.
C:\Program Files\BrAutomation

Default installation path for B&R Automation Studio 3.0 and 4.0 software.
C:\TwinCAT

Default installation path for Beckhoff TwinCAT 2.11 and 3 software.
C:\Program Files\KW-Software\MULTIPROG 5.0

Default installation path for PHOENIX CONTACT (previously KW) Software MULTIPROG 5.0
software. For MULTIPROG 5.50, the installation path may be different, change accordingly.

C:\Program Files\Phoenix Contact\Software Suite 150

Default installation path for Phoenix Contact PC WORX 6.0 software.
C:\Program Files\Rockwell Software

Default installation path for Rockwell Automation RSLogix 5000 software.
C:\Program Files\Siemens

Default installation path for Siemens SIMATIC STEP 7 5.4 software.
C:\Program Files\Siemens\Automation

Default installation path for Siemens TIA Portal software.

Tips

* When you change the Target IDE value, the value of this parameter changes.

» If you right-click the Subsystem block, the PLC Code > Generate and Import Code for
Subsystem command uses this value to import generated code.

» Ifyour target IDE installation is standard, do not edit this parameter. Leave it as the default value.

» Ifyour target IDE installation is nonstandard, edit this value to specify the actual installation path.

» Ifyou change the path and click Apply, the changed path remains for that target IDE for other
models and between MATLAB sessions. To reinstate the factory default, use the command:

plccoderpref('plctargetidepaths', 'default')

12-6

PLC Coder: General

Command-Line Information
See plccoderpref.
See Also

“Import Structured Text Code Automatically” on page 1-17

Code Output Directory

Enter a path to the target folder into which code is generated. This option is available on the PLC
Code Generation pane in the Configuration Parameters dialog box.

Settings
Default: plcsrc subfolder in your working folder

Command-Line Information
Parameter: PLC_ OutputDir
Type: string

Value: string

Default: 'plcsrc'

Tips

» If the target folder path is empty, a default value of . /plcsrc is used as the Code Output
Directory.

+ If, you want to generate code in the current folder use . as the output directory.
* The Code Output Directory can have the same name as your current working folder.

See Also

“Generate Structured Text from the Model Window” on page 1-9

Generate Testbench for Subsystem

Specify the generation of test bench code for the subsystem. This option is available on the PLC
Code Generation pane in the Configuration Parameters dialog box.

Settings
Default: off

Y1 On
Enables generation of test bench code for subsystem.

Disables generation of test bench code for subsystems.

Command-Line Information
Parameter: PLC_ GenerateTestbench
Type: string

12-7

12 Configuration Parameters for Simulink PLC Coder Models

Value: 'on' | 'off'
Default: 'of '

See Also

“Generate Structured Text from the Model Window” on page 1-9

Include Testbench Diagnostic Code

Specify the generation of test bench code with additional diagnostic information that will help you
identify output variables causing test bench failures. This option is available on the PLC Code
Generation pane in the Configuration Parameters dialog box. To enable this parameter, you must
select the Generate testbench for subsystem option

Settings
Default: off

Y On

Enables generation of test bench code with additional diagnostic information.

Disables generation of test bench code with additional diagnostic information.

Command-Line Information

Parameter: PLC GenerateTestbenchDiagCode
Type: string

Value: 'on' | 'off'

Default: 'off"'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Generate Functions Instead of Function Block

Use this option to control whether the generated Structured Text code contains Function instead of
Function Block. This option is available for only the Phoenix Contact PC WORX or the PHOENIX
CONTACT (previously KW) Software MULTIPROG target. There are certain cases where you may not
be able to generate code with Function instead of Function Block. For example, if your Simulink
subsystem or MATLAB Function block has internal state or persistent variables. In such cases, the
software issues a diagnostic warning.

This option is available on the PLC Code Generation pane in the Configuration Parameters dialog
box, when the Target IDE is set to Phoenix Contact PC WORX 6.0 or KW-Software
MULTIPROG 5.0.

Settings

Default: off

12-8

PLC Coder: General

Y1 On

The generated Structured Text code contains Function instead of Function Block where
possible.

Off

Switch to the default behavior of the software.

Command-Line Information
Parameter: PLC_EmitAsPureFunctions
Type: string

Value: 'on' | 'off'

Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Allow Functions with Zero Inputs

Emit a function with no inputs as a function instead of a function block. This option is available for
only the Phoenix Contact PC WORX or the PHOENIX CONTACT (previously KW) Software
MULTIPROG target.

When the Target IDE is set to Phoenix Contact PC WORX 6.0 or KW-Software MULTIPROG
5.0, in the Configuration parameters dialog box, PLC Code Generation pane, this option is
available.

Settings
Default: off

Y On

The generated Structured Text code contains Function instead of Function Blocks when
there is a function with no inputs.

Off

The generated Structured Text code contains function blocks and no functions.
Command-Line Information
Parameter: PLC PureFunctionNoInputs
Type: string
Value: 'on' | 'off'
Default: 'off'
See Also

“Generate Structured Text from the Model Window” on page 1-9

12-9

12 Configuration Parameters for Simulink PLC Coder Models

12-10

Suppress Auto-Generated Data Types

Use this option to control whether the generated Structured Text code contains auto-generated data
types for array types. This option is available for only the Phoenix Contact PC WORX or the PHOENIX
CONTACT (previously KW) Software MULTIPROG target.

This option is available on the PLC Code Generation pane in the Configuration Parameters dialog
box, when the Target IDE is set to Phoenix Contact PC WORX 6.0 or KW-Software
MULTIPROG 5.0.

Settings
Default: off
Y On
The software automatically generates named types for array types in your Simulink model.

Off
Switch to the default behavior of the software.

Command-Line Information
Parameter: PLC_ SuppressAutoGenType
Type: string

Value: 'on' | 'off'

Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Emit Data type Worksheet Tags for PCWorx

Use this option to control whether datatypeWorksheet tags are represented in code generated for
Phoenix Contact PC WORX target. This option allows you to have finer control and generate multiple
datatypeWorksheet definitions.

This option is available on the PLC Code Generation pane in the Configuration Parameters dialog
box, when the Target IDE is set to Phoenix Contact PC WORX 6.0.

Settings
Default: off
Y1 On
The datatypeWorksheet tags are marked as separate tags in the generated code.

Off
No separate datatypeWorksheet tags are in the generated code.

Command-Line Information
Parameter: PLC EmitDatatypeWorkSheet

PLC Coder: General

Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Aggressively Inline Structured Text Function Calls

Using this option, you can control inlining of Structured Text function calls for Rockwell Automation
targets. By default, the software attempts to inline only math functions where possible. With this
option, the software aggressively inlines all function calls so that the generated code has less number
of Function blocks.

This option is available on the PLC Code Generation pane in the Configuration Parameters dialog
box, when the Target IDE is set to Rockwell Automation targets such as Rockwell Studio 5000:
AOI, Rockwell Studio 5000: Routine, Rockwell RSLogix 5000: AOI, or Rockwell
RSLogix 5000: Routine.

Settings
Default: off
4 On
Aggressively inlines Structured Text function calls for RSLogix IDE.

Off
Reverts to its default behavior and inlines only math function calls in the generated code.
Command-Line Information
Parameter:PLC EnableAggressiveInlining
Type: string
Value: 'on' | 'off'
Default: 'off"'
See Also

* “Generate Structured Text from the Model Window” on page 1-9
* “Generated Code Structure for Simple Simulink Subsystems” on page 2-2

12-11

12 Configuration Parameters for Simulink PLC Coder Models

PLC Coder: Comments

&) Configuration Parameters: simple_subsystem/Configuration (Active) - O s
Solver Overall control

Data Import/Export

Math and Data Types R

» Diagnostics +| Include block description
Hardware Implementation
Model Referencing Auto generated comments

Simulation Target
Code Generation
Coverage Show eliminated blocks
HDL Code Generation
Design Verifier
¥ PLC Code Generation

Comments

+| Simulink block / Stateflow object comments

| 3
| 3
[2
| 3

Optimization
Identifiers
Report

OK Cancel Help Apply

In this section...

“Comments Overview” on page 12-12

“Include Comments” on page 12-12

“Include Block Description” on page 12-13

“Simulink Block / Stateflow Object Comments” on page 12-14
“Show Eliminated Blocks” on page 12-14

Comments Overview

Control the comments that the Simulink PLC Coder software automatically creates and inserts into
the generated code.

See Also

“Generate Structured Text from the Model Window” on page 1-9

Include Comments

Specify which comments are in generated files. This option is available on the PLC Code Generation
> Comments pane in the Configuration Parameters dialog box.

12-12

PLC Coder: Comments

Settings

Default: on

Y On

Places comments in the generated files based on the selections in the Auto generated
comments pane.

If you create links to requirements documents from your model using the Simulink Requirements
software, the links also appear in generated code comments.

Off

Omits comments from the generated files.

Command-Line Information
Parameter: PLC_RTWGenerateComments
Type: string

Value: 'on' | 'off'

Default: 'on'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Include Block Description

Specify which block description comments are in generated files. This option is available on the PLC
Code Generation > Comments pane in the Configuration Parameters dialog box.

Settings
Default: on

Y1 On

Places comments in the generated files based on the contents of the block properties General
tab.

Off

Omits block descriptions from the generated files.
Command-Line Information
Parameter: PLC PLCEnableBlockDescription
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

* “Propagate Block Descriptions to Code Comments” on page 1-13
* “Generate Structured Text from the Model Window” on page 1-9

12-13

12 Configuration Parameters for Simulink PLC Coder Models

12-14

Simulink Block / Stateflow Object Comments

Specify whether to insert Simulink block and Stateflow object comments. This option is available on
the PLC Code Generation > Comments pane in the Configuration Parameters dialog box.

Settings
Default: on

41 On

Inserts automatically generated comments that describe block code and objects. The comments
precede that code in the generated file.

Off
Suppresses comments.

Command-Line Information

Parameter: PLC RTWSimulinkBlockComments
Type: string

Value: 'on' | 'off'

Default: 'on'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Show Eliminated Blocks

Specify whether to insert eliminated block comments. This option is available on the PLC Code
Generation > Comments pane in the Configuration Parameters dialog box.

Settings
Default: off

Yl On
Inserts statements in the generated code from blocks eliminated as the result of optimizations
(such as parameter inlining).
Off
Suppresses statements.
Command-Line Information
Parameter: PLC_RTWShowEliminatedStatement
Type: string

Value: 'on' | 'off'
Default: 'of '

See Also

“Generate Structured Text from the Model Window” on page 1-9

PLC Coder

: Optimization

PLC Coder: Optimization

L

4
4
4
4

Solver

Data Import/Export
Math and Data Types
Diagnostics

Hardware Implementation
Madel Referencing
Simulation Target
Code Generation
Coverage

HDL Code Generation
Design Verifier

¥ PLC Code Generation

Comments
Optimization
Identifiers
Report

& Configuration Parameters: simple_subsystem/Configuration (Active) - O *

Q

Optimization options

Default parameter behavior: |Tunable - | | Configure...
Signal storage reuse
Remove code from floating-peint to integer conversions that wraps out-of-range values
Generate reusable code
Inline named constants
Reuse MATLAB Function block variables

Loop unrolling thresheld: |5

OK Cancel Help Apply

In this section...

“Optimization Overview” on page 12-15
“Default Parameter Behavior” on page 12-16
“Signal Storage Reuse” on page 12-17

“Inline Named Constants” on page 12-19
“Reuse MATLAB Function Block Variables” on page 12-20
“Loop Unrolling Threshold” on page 12-20

“Remove Code from Floating-Point to Integer Conversions That Wraps Out-Of-Range Values” on page
12-17

“Generate Reusable Code” on page 12-18

Optimization Overview

Select the code generation optimization settings.

See Also

“Generate Structured Text from the Model Window” on page 1-9

12-15

12 Configuration Parameters for Simulink PLC Coder Models

12-16

Default Parameter Behavior

Transform numeric block parameters into constant inlined values in the generated code. This option
is available on the PLC Code Generation > Optimization pane in the Configuration Parameters
dialog box.

Description

Transform numeric block parameters into constant inlined values in the generated code.
Category: Optimization

Settings

Default: Tunable for GRT targets | Inlined for ERT targets

Inlined

Set Default parameter behavior to Inlined to reduce global RAM usage and increase
efficiency of the generated code. The code does not allocate memory to represent numeric block
parameters such as the Gain parameter of a Gain block. Instead, the code inlines the literal
numeric values of these block parameters.

Tunable

Set Default parameter behavior to Tunable to enable tunability of numeric block parameters
in the generated code. The code represents numeric block parameters and variables that use the
storage class Auto, including numeric MATLAB variables, as tunable fields of a global parameters
structure.

Tips

* Whether you set Default parameter behavior to Inlined or to Tunable, create parameter data
objects to preserve tunability for block parameters. For more information, see “Create Tunable
Calibration Parameter in the Generated Code” (Simulink Coder).

* When you switch from a system target file that is not ERT-based to one that is ERT-based, Default
parameter behavior sets to Inlined by default. However, you can change the setting of Default
parameter behavior later.

* When a top model uses referenced models, or if a model is referenced by another model:

+ All referenced models must set Default parameter behavior to Inlined if the top model has
Default parameter behavior set to Inlined.

* The top model can specify Default parameter behavior as Tunable or Inlined.

* If your model contains an Environment Controller block, you can suppress code generation for the
branch connected to the Sim port if you set Default parameter behavior to Inlined and the
branch does not contain external signals.

Command-Line Information

Parameter:PLC_PLCEnableVarReuse
Type: string

Value: 'on' | 'off'

Default: 'on’

PLC Coder: Optimization

See Also

“Generate Structured Text from the Model Window” on page 1-9

Signal Storage Reuse

Reuse signal memory. This option is available on the PLC Code Generation > Optimization pane in
the Configuration Parameters dialog box.

Settings

Default: on

Yl On
Reuses memory buffers allocated to store block input and output signals, reducing the memory
requirement of your real-time program.
Off
Allocates a separate memory buffer for each block's outputs. This allocation makes block outputs
global and unique, which in many cases significantly increases RAM and ROM usage.

Tips

» This option applies only to signals with storage class Auto.

* Signal storage reuse can occur among only signals that have the same data type.

* Clearing this option can substantially increase the amount of memory required to simulate large
models.

* Clear this option if you want to:

* Debug a C-MEX S-function.

» Use a Floating Scope or a Display block with the Floating display option selected to inspect
signals in a model that you are debugging.

+ Ifyou select Signal storage reuse and attempt to use a Floating Scope or floating Display block
to display a signal whose buffer has been reused, an error dialog box opens.

Command-Line Information
Parameter:PLC PLCEnableVarReuse
Type: string

Value: 'on' | 'off'

Default: 'on'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Remove Code from Floating-Point to Integer Conversions That Wraps
Out-Of-Range Values

Enable code removal for efficient casts. This option is available on the PLC Code Generation >
Optimization pane in the Configuration Parameters dialog box.

12-17

12 Configuration Parameters for Simulink PLC Coder Models

Settings
Default: on
Y1 On
Removes code from floating-point to integer conversions.

Off
Does not remove code from floating-point to integer conversions.

Tips

Use this parameter to optimize code generation.
Command-Line Information

Parameter: PLC PLCEnableEfficientCast
Type: string

Value: 'on' | 'off'

Default: 'on'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Generate Reusable Code

Using this option, you can generate better reusable code for reusable subsystems. For instance, if
your model contains multiple instances of the same subsystem and some instances have constant
inputs, by default, the generated code contains separate function blocks for each instance. If you
select this option, the software does not consider whether the inputs to the subsystem are constant
and generates one function block for the multiple instances.

This option is available on the PLC Code Generation > Optimization pane in the Configuration
Parameters dialog box.

Settings
Default: off
Y On
Generates better reusable code for reusable subsystems.

Off

Reverts to its default behavior. Instead of a single reusable function block, the software generates
separate function blocks for individual instances of a reusable subsystem because of certain
differences in their inputs.

Tips

» Ifyou find multiple function blocks in your generated code for multiple instances of the same
subsystem, select this option. The software performs better identification of whether two

12-18

PLC Coder: Optimization

instances of a subsystem are actually the same and whether it can combine the multiple blocks
into one reusable function block.

« If different instances of a subsystem have different values of a block parameter, you cannot
generate reusable code. Clear this option or use the same block parameter for all instances.

» Despite selecting this option, if you do not see reusable code for different instances of a
subsystem, you can determine the reason. To determine if two reusable subsystems are identical,
the code generator internally uses a checksum value. You can compare the checksum values for
two instances of a subsystem and investigate why they are not identical.

To get the checksum values for the two instances that you expect to be identical, use the function
Simulink.SubSystem.getChecksum. If the checksum values are different, investigate the
checksum details to see why the values are not identical.

Command-Line Information
Parameter:PLC_GenerateReusableCode
Type: string

Value: 'on' | 'off'

Default: 'off'

See Also

* “Generate Structured Text from the Model Window” on page 1-9
* “Generated Code Structure for Reusable Subsystems” on page 2-4

Inline Named Constants

Using this option, you can control inlining of global named constants. By default, the generated code
contains named ssMethodType constants for internal states or other Simulink semantics. If you
select this option, the software replaces the named constants with its integer value.

This option is available on the PLC Code Generation > Optimization pane in the Configuration
Parameters dialog box.

Settings
Default: off
41 On
Inlines named constants.

Off

Reverts to its default behavior and uses named constants in the generated code.
Command-Line Information
Parameter:PLC_InlineNamedConstant
Type: string

Value: 'on' | 'off'
Default: 'of '

12-19

12 Configuration Parameters for Simulink PLC Coder Models

See Also

* “Generate Structured Text from the Model Window” on page 1-9

* “Generated Code Structure for Simple Simulink Subsystems” on page 2-2

Reuse MATLAB Function Block Variables

You can use this option to enable reuse of MATLAB function block variables in the generated code.

This option is available on the PLC Code Generation > Optimization pane in the Configuration
Parameters dialog box.

Settings

Default: off

41 On

Generates code that reuses MATLAB Function block variables where appropriate.

Off
Reverts to its default behavior and does not reuse variables in the generated code.
Command-Line Information
Parameter:PLC_ReuseMLFcnVariable
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

* “Generate Structured Text from the Model Window” on page 1-9
* “Generated Code Structure for MATLAB Function Block” on page 2-12

Loop Unrolling Threshold

Specify the minimum signal or parameter width for which a for loop is generated. This option is
available on the PLC Code Generation > Optimization pane in the Configuration Parameters
dialog box.

Settings

Default: 5

Specify the array size at which the code generator begins to use a for loop instead of separate
assignment statements to assign values to the elements of a signal or parameter array.

When the loops are perfectly nested loops, the code generator uses a for loop if the product of the
loop counts for all loops in the perfect loop nest is greater than or equal to this threshold.

12-20

PLC Coder: Optimization

Command-Line Information
Parameter: PLC RollThreshold
Type: string

Value: any valid value

Default: '5"

See Also

“Generate Structured Text from the Model Window” on page 1-9

12-21

12 Configuration Parameters for Simulink PLC Coder Models

PLC Coder: Identifiers

& Configuration Parameters: simple_subsystern/Configuration (Active) — a *
Solver Identifier naming rules

Data Import/Export
Math and Data Types
» Diagnostics [] Override target default maximum identifier length
Hardware Implementation
Model Referencing
Simulation Target

[| Use subsystem instance name as function block instance name

Maximum identifier length: 31

[| Override target default enum name behavior

» Code Generation .

» Coverage Code interface

» HDL Code Generation [| Remove top level subsystem ssmethod type
>

Design Verifier

G te logagi d
¥ PLC Code Generation) ezl E

C‘.onl1mlentls Externally defined identifiers
Optimization

Identifiers Identifier Names:

Report

Enter a list of space separated identifiers whick

Reserved identifier name list

[] Use the same reserved names as Simulation Target

OK Cancel Help Apply

In this section...

“Identifiers Overview” on page 12-23

“Use Subsystem Instance Name as Function Block Instance Name” on page 12-23
“Override Target Default Maximum Identifier Length” on page 12-23

“Maximum Identifier Length” on page 12-24

“Override Target Default enum Name Behavior” on page 12-24

“Generate enum Cast Function” on page 12-25

“Use the Same Reserved Names as Simulation Target” on page 12-26

“Reserved Names” on page 12-26

“Externally Defined Identifiers” on page 12-27

“Preserve Alias Type Names for Data Types” on page 12-27

12-22

PLC Coder: Identifiers

Identifiers Overview
Select the automatically generated identifier naming rules.
See Also

“Generate Structured Text from the Model Window” on page 1-9

Use Subsystem Instance Name as Function Block Instance Name

Specify how you want the software to name the Function block instances it generates for the
subsystem. When you select this option, the software uses the subsystem instance name as the name
of the Function blocks in the generated code. By default, the software generates index-based instance
names.

This option is available on the PLC Code Generation > Identifiers pane in the Configuration
Parameters dialog box.

Settings
Default: off

41 On

Uses the subsystem instance name as the name of the Function block instances in the generated
code.

Off
Uses auto-generated index-based instance names for the Function blocks in the generated code.

Command-Line Information

Parameter: PLC_FBUseSubsystemInstanceName
Type: string

Value: 'on' | 'off'

Default: 'off"'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Override Target Default Maximum Identifier Length

If your custom target IDE version supports long name identifiers, you can use this option along with
the Maximum identifier length to specify the maximum number of characters in the generated
function, type definition, and variable names. By default, the software complies with the maximum
identifier length of standard versions of the target IDE and ignores unsupported values specified in
the Maximum identifier length.

This option is available on the PLC Code Generation > Identifiers pane in the Configuration
Parameters dialog box.

Settings

Default: off

12-23

12 Configuration Parameters for Simulink PLC Coder Models

12-24

Yl On
Override target default maximum identifier length in the generated code.

Off
The generated code uses the default identifier length of the target IDE.

Command-Line Information

Parameter: PLC OverrideDefaultNamelLength
Type: string

Value: 'on' | 'off'

Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Maximum lIdentifier Length

Specify the maximum number of characters in generated function, type definition, and variable
names. This option is available on the PLC Code Generation > Identifiers pane in the
Configuration Parameters dialog box.

Settings

Default: 31

Minimum: 31

Maximum: 256

You can use this parameter to limit the number of characters in function, type definition, and variable
names. Many target IDEs have their own restrictions for these names. Simulink PLC Coder complies

with target IDE limitations.

Command-Line Information
Parameter: PLC RTWMaxIdLength
Type: int

Value: 31 to 256

Default: 31

See Also

“Generate Structured Text from the Model Window” on page 1-9

Override Target Default enum Name Behavior

Use this option to enable enum names to be used as the identifier names instead of enum values. The
PLC target IDE must support enum type.

This option is available on the PLC Code Generation > Identifiers pane in the Configuration
Parameters dialog box.

PLC Coder: Identifiers

Settings
Default: off
Y On
Override target default enum behavior and always have enum names instead of enum values.

Off
The generated code uses the enum behavior of the target IDE.
Command-Line Information
Parameter: PLC_GenerateEnumSymbolicName
Type: string
Value: 'on' | 'off"'
Default: 'off'
See Also

“Generate Structured Text from the Model Window” on page 1-9

Generate enum Cast Function
Autogenerate the enum type conversion code. The target PLC IDE must support enum type.

This option is available in the Configuration Parameters dialog box, PLC Code Generation >
Identifiers pane .

Settings
Default: off
Y1 On
Simulink PLC Coder autogenerates the enum type conversion code.

Off
Manually create a MATLAB function to convert the enum type value to an integer or to convert an
integer to an enum type value.

Command-Line Information

Parameter: PLC GenerateEnumCastFunction
Type: string

Value: 'on' | 'off'

Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-9

12-25

12 Configuration Parameters for Simulink PLC Coder Models

12-26

Use the Same Reserved Names as Simulation Target

Specify whether to use the same reserved names as those specified in the Reserved names field of
the Simulation Target pane in the Configuration Parameters dialog box. This option is available on
the PLC Code Generation > Identifiers pane in the Configuration Parameters dialog box.

Settings

Default: off

Yl On
Uses the same reserved names as those specified in the Reserved names filed of the Simulation
Target pane in the Configuration Parameters dialog box.
Off

Does not use the same reserved names as those specified in the Simulation Target >
Identifiers pane pane.

Command-Line Information

Parameter: PLC RTWUseSimReservedNames
Type: string

Value: 'on' | 'off'

Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Reserved Names

Enter the names of variables or functions in the generated code that you do not want to be used. This
option is available on the PLC Code Generation > Identifiers pane in the Configuration Parameters
dialog box.

Settings
Default: ()

Changes the names of variables or functions in the generated code to avoid name conflicts with
identifiers in custom code. Reserved names must be fewer than 256 characters in length.

Tips
o Start each reserved name with a letter or an underscore.

* Each reserved name must contain only letters, numbers, or underscores.
* Separate the reserved names by using commas or spaces.

Command-Line Information
Parameter: PLC_RTWReservedNames
Type: string

Value: string

Default: '’

PLC Coder: Identifiers

See Also

“Generate Structured Text from the Model Window” on page 1-9

Externally Defined Identifiers

Specify the names of identifiers for which you want to suppress definitions. This option is available on
the PLC Code Generation > Identifiers pane in the Configuration Parameters dialog box.

Settings
Default: ()

Suppresses the definition of identifiers, such as those for function blocks, variables, constants, and
user types in the generated code. This suppression allows the generated code to refer to these
identifiers. When you import the generated code into the PLC IDE, you must provide these
definitions.

Tips
e Start each name with a letter or an underscore.

* Each name must contain only letters, numbers, or underscores.
* Separate the names by using spaces or commas.

Command-Line Information

Parameter: PLC_ExternalDefinedNames
Type: string

Value: string

Default: '’

See Also

* “Generate Structured Text from the Model Window” on page 1-9
* “Integrate Externally Defined Identifiers” on page 8-2

* Integrating User Defined Function Blocks, Data Types, and Global Variables
into Generated Structured Text

Preserve Alias Type Names for Data Types

Specify that the generated code must preserve alias data types from your model. This option is
available on the PLC Code Generation > Identifiers pane in the Configuration Parameters dialog
box.

Using the Simulink.AliasType class, you can create an alias for a built-in Simulink data type. If
you assign an alias data type to signals and parameters in your model, when you use this option, the
generated code uses your alias data type to define variables corresponding to the signals and
parameters.

For instance, you can create an alias SAFEBOOL from the base data type boolean. If you assign the
type SAFEBOOL to signals and parameters in your model, the variables in the generated code
corresponding to those signals and parameters also have the type SAFEBOOL. Using this alias type
SAFEBOOL, you can conform to PLCopen safety specifications that suggest using safe data types for
differentiation between safety-relevant and standard signals.

12-27

matlab:plcdemo_external_symbols
matlab:plcdemo_external_symbols

12 Configuration Parameters for Simulink PLC Coder Models

12-28

Settings
Default: off

Y1 On

The generated code preserves alias data types from your model.

For your generated code to be successfully imported to your target IDE, the IDE must support
your alias names.

Off

The generated code does not preserve alias types from your model. Instead, the base type of the
Simulink.AliasType class determines the variable data type in generated code.

Tips

The alias that you define for a Simulink type must have the same semantic meaning as the base
Simulink type. It must not be a data type already supported in Structured Text and semantically
different from the base Simulink type. For instance, WORD is a data type supported in Structured Text
but is semantically different from an integer type. If you define an alias WORD for a Simulink built-in
integer type, for instance uint16, and preserve the alias name, the type WORD that appears in your
generated code is used semantically as a WORD and not as an INT. The generated code has a different
meaning from the semantics of the model.

Command-Line Information
Parameter: PLC PreserveAliasType
Type: string

Value: 'on' | 'off'

Default: 'of '

PLC Coder: Report

PLC Coder: Report

£ Configuration Parameters: simple_subsystem/Configuration (Active) — d >
Solver Code generation report

Data Import/Export
Math and Data Types
» Diagnostics [_| Generate model web view

Generate traceability report

Hardware Implementation
Model Referencing
Simulation Target
» Code Generation
» Coverage
» HDL Code Generation
» Design Verifier
¥ PLC Code Generation
Comments
Optimization
Identifiers
Report

Open report automatically

OK Cancel Help Apply

In this section...

“Report Overview” on page 12-29

“Generate Traceability Report” on page 12-30
“Generate Model Web View” on page 12-30
“Open Report Automatically” on page 12-31

Report Overview

After code generation, specify whether a report must be produced. Control the appearance and
contents of the report.

The code generation report shows a mapping between Simulink model objects and locations in the
generated code. The report also shows static code metrics about files, global variables, and function
blocks.

12-29

12 Configuration Parameters for Simulink PLC Coder Models

See Also

“Generate Structured Text from the Model Window” on page 1-9

Generate Traceability Report

Specify whether to create a code generation report. This option is available on the PLC Code
Generation > Report pane in the Configuration Parameters dialog box.

Settings
Default: on
Y1 On
Creates code generation report as an HTML file.

Off
Suppresses creation of code generation report.

Command-Line Information

Parameter: PLC GenerateReport

Type: string

Value: 'on' | 'off'

Default: 'on'

See Also

“Generate Structured Text from the Model Window” on page 1-9
Traceability Report Limitations

Simulink PLC Coder does not generate a traceability report file when generating Ladder Diagrams
from Stateflow charts. However, traceability report file is generated when generating Structured Text
from Stateflow charts.

Ladder Diagrams. charts. However, traceability report file is generated when generating Structured
Text from charts.

Generate Model Web View

To navigate between the code and the model within the same window, include the model web view in
the code generation report. This option is available on the PLC Code Generation > Report pane in
the Configuration Parameters dialog box.

You can share your model and generated code outside of the MATLAB environment. You must have a
Simulink Report Generator to include a Web view (Simulink Report Generator) of the model in the
code generation report.

Settings

Default: Off

12-30

PLC Coder: Report

Yl On
Includes model Web view in the code generation report.

Off
Omits model Web view in the code generation report.

Command-Line Information
Parameter: PLC GenerateWebView
Type: string

Value: 'on' | 'off'

Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Open Report Automatically

Specify whether to open the code generation report automatically. This option is available on the PLC
Code Generation > Report pane in the Configuration Parameters dialog box.

Settings
Default: off
Y1 On
Opens the code generation report as an HTML file.

Off
Suppresses opening of the code generation report.

Command-Line Information
Parameter: PLC LaunchReport
Type: string

Value: 'on' | 'off'

Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-9

12-31

12 Configuration Parameters for Simulink PLC Coder Models

PLC Coder:Interface

& Configuration Parameters: pledemo_simple_subsystem/Configuration (Active — O

&8 Configuratio arameters: plcdemo_simple_subs

Q

Solver Code interface

Data Import/Export

Math and Data Types
» Diagnostics Keep top level ssMethod name same as non-top level

Remove top level subsystem ssmethod type

Hardware Implementation
Model Referencing
Simulation Target

» Code Generation

Remove initialization statements for externally defined state variables |

Generate logging code

Coverage Stateflow
¥ HOL Code Generation Absolute-time temporal logic: | Target Timer -
Target
Optimization

Floating Point
Global Settings
Report
Test Bench
EDA Tool Scripts
» Design Verifier
¥ PLC Code Generation
Comments
Optimization
Identifiers
Report
Interface

OK Cancel Help Apply

In this section...

“Interface Overview” on page 12-32

“Generate Logging Code” on page 12-33

“Keep Top-Level ssmethod Name the Same as the Non-Top Level Name” on page 12-33
“Remove Top-level Subsystem Ssmethod Type” on page 12-34

“Remove Initialization Statements for Externally Defined State Variables” on page 12-34

“Absolute-Time Temporal Logic” on page 12-35

Interface Overview

The PLC Code Generation > Interface category includes parameters for configuring the interface
of the generated code.

12-32

PLC Coder:Interface

See Also

“Generate Structured Text from the Model Window” on page 1-9

Generate Logging Code

With this option, you can generate code with logging instrumentation to collect run-time data on
supported PLC targets. The PLC target IDEs must have support for inout variables. For Rockwell
Automation targets, you can set up an Open Platform Communications (OPC) server and use the
Simulation Data Inspector (SDI) in Simulink to visualize and monitor the logging data.

This option is available on the PLC Code Generation > Interface pane in the Configuration
Parameters dialog box.

Settings
Default: off
Y1 On
Generate Function block logging code for supported targets.

Off
No logging instrumentation is included in the generated code.

Command-Line Information
Parameter: PLC_GeneratelLoggingCode
Type: string

Value: 'on' | 'off'

Default: 'of '

See Also

“Generate Structured Text from the Model Window” on page 1-9

Keep Top-Level ssmethod Name the Same as the Non-Top Level Name

Prevent renaming the SS_OUTPUT type to SS_STEP type from the top-level subsystem argument
interface. When you select this option, the software emits the same ssMethod type in the code
generation for both top and non-top level blocks.

This option is available on the PLC Code Generation > Interface pane in the Configuration
Parameters dialog box.

Settings
Default: off
Yl On
Generated code for top-level block does not contain the SS_STEP type in generated code.

Off
Generated code contains SS_STEP AND SS OUTPUT type function blocks.

12-33

12 Configuration Parameters for Simulink PLC Coder Models

Command-Line Information
Parameter: PLC_RemoveSSStep
Type: string

Value: 'on' | 'off'

Default: 'of '

See Also

» “Distributed Model Code Generation Options” on page 23-2
* “Generated Code Structure for PLC RemoveSSStep” on page 23-3

Remove Top-level Subsystem Ssmethod Type

Use this option to remove the ssmethod type from the top-level subsystem argument interface. When
this option is enabled, the software removes the ssmethod type and converts the subsystem
initialization code from switch case statement to conditional if statement. As a result, the generated
code has the same interface as the model subsystem.

This option is available on the PLC Code Generation > Interface pane in the Configuration
Parameters dialog box.

Settings
Default: off
4 On
Remove top level function block ssmethod type in generated code.

Off
Generated code contains ssmethod type Function block and switch case statements.

Command-Line Information

Parameter: PLC RemoveTopFBSSMethodType

Type: string

Value: 'on' | 'off'

Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Remove Initialization Statements for Externally Defined State
Variables

Use this option to remove initialization assignment statements for variables that have storage class
ImportedExtern and ExportedGlobal from the generated code.

Mark ExportedGlobal variables as externally defined. For more information, see “Externally
Defined Identifiers” on page 12-27

12-34

PLC Coder:Interface

Settings

Default: off

/I On
Remove from the generated code initialization assignment statements for variables that have
storage class ImportedExtern and ExportedGlobal.
Off
Generated code contains initialization assignment statements for variables that have storage
class ImportedExtern and ExportedGlobal.

Command-Line Information

Parameter: PLC PreventExternalVarInitialization
Type: string

Value: 'on' | 'off'

Default: 'off'

See Also

» “Distributed Model Code Generation Options” on page 23-2
* “Generated Code Structure for PLC PreventExternalVarInitialization” on page 23-5

Absolute-Time Temporal Logic

Use this option to specify if the generated code uses the target timer or a target-independent counter
for Stateflow absolute-time temporal logic semantics implementation.

Settings
Default: Target Timer

Target Timer

Generated code uses the target timer to implement Stateflow absolute-time temporal logic
semantics.

Target-independent Counter

Generated code contains a target-independent integer counter to implement Stateflow absolute-
time temporal logic semantics.

Command-Line Information

Parameter: PLC_AbsTimeTemporallLogic
Type: character vector

Value: 'timer' | 'counter!’

Default: 'timer'

Limitations

* Absolute-time temporal logic does not support stateflow chart using global clocks.

» Testbench code verification can fail for absolute-time temporal logic using floating-point
comparison operations.

12-35

External Mode

+ “External Mode Logging” on page 13-2
* “Generate Structured Text Code with Logging Instrumentation” on page 13-3
* “Use the Simulation Data Inspector to Visualize and Monitor the Logging Data” on page 13-7

13 External Mode

External Mode Logging

13-2

With external mode logging, you can generate code from Simulink models with logging
instrumentation to collect run-time data on PLC targets. You can enable this feature by using
Generate logging code option in the configuration parameters or by using the

PLC GeneratelLoggingCode command-line property. The PLC target IDEs must have support for
inout variables. You can generate logging code for one of the following target PLC IDEs:

3S-Smart Software Solutions CoDeSys Version 2.3
3S-Smart Software Solutions CoDeSys Version 3.5
Rockwell Automation RSLogix 5000

Rockwell Automation Studio 5000

Beckhoff TwinCAT 2.11

Beckhoff TwinCAT 3

Generic

PLCopen XML

Rexroth IndraWorks

OMRON Sysmac Studio

For Rockwell Automation targets, you can set up an Open Platform Communications (OPC) server and
use the Simulation Data Inspector in Simulink to visualize and monitor the logging data. The OPC
Toolbox™ is required to run the external mode visualization.

See Also

More About

“Generate Structured Text Code with Logging Instrumentation” on page 13-3
“Use the Simulation Data Inspector to Visualize and Monitor the Logging Data” on page 13-7

Generate Structured Text Code with Logging Instrumentation

Generate Structured Text Code with Logging Instrumentation

This topic assumes that you have generated Structured Text code from a Simulink model. If you have
not yet done so, see “Generate Structured Text from the Model Window” on page 1-9.

The example in this topic shows generated code for the Rockwell Automation Studio 5000 IDE.
Generated code for other IDE platforms looks different.

1 Create a Simulink model ext _demol. slx containing a top-level subsystem with two child
subsystems S1, S2, a MATLAB Function block and a Stateflowchart.

|¥a| ext_demol b [Ba| Subsystem b -

2 The S1, S2 blocks are identical and contain simple feedback loop.The Stateflow chart contains a

simple state machine.

|"ajext_demol P [BajSubsystem b (Pa)S1

13-3

13 External Mode

3 The MATLAB function block implements the following code:

function y = fcn
persistent i;

if isempty(i)
i=0;
end
if (i>20)
i=20;
else
i=i+1;
end
y = sin(pi*i/10);
4 Select the top-level subsystem and open the configuration parameters window. On the PLC Code

Generation pane, select the Target IDE as Rockwell Studio 5000: AOI. On the Identifiers
pane, select Generate logging code.

13-4

Generate Structured Text Code with Logging Instrumentation

& Configuration Parameters: ext_dernol/Configuration (Active) - Od *
Solver Identifier naming rules

Data Import/Export
Math and Data Types [] Use subsystem instance name as function block instance name
» Diagnostics [] Override target default maximum identifier length
Hardware Implementation
Maodel Referencing
Simulation Target

» Code Generation

Maximum identifier length: 31

[] Override target default enum name behavior

Code interface

» Coverage
¥ PLC Code Generation [] Remove top level subsystem ssmethod type
Comments
+| Generate logging code
Optimization I gging
\dentifiers Externally defined identifiers
Report

Identifier Names:

s -

OK Cancel Help Apply

In the model, select the top subsystem block, right-click, and choose PLC Code>Generate Code
for Subsystem.

This operation generates L5X AOI code for the top subsystem block and the children S1, S2,
MATLAB function, and Stateflow chart blocks. In the code folder, it also generates
plc_log data.mat which has the logging data information.

13-5

13 External Mode

E'r

- & Fnd: w % Makch Case

¥_REROT

Code Metrics Report

Generated Files

[Lem_vali J j W= | logging data in-out
var argument
oK Help
6 After generating the code, you can download and run the logging code from the PLC IDE.
See Also
More About

“External Mode Logging” on page 13-2

“Use the Simulation Data Inspector to Visualize and Monitor the Logging Data” on page 13-7

13-6

Use the Simulation Data Inspector to Visualize and Monitor the Logging Data

Use the Simulation Data Inspector to Visualize and Monitor the
Logging Data

This workflow is supported for Rockwell Automation targets. This workflow shows you how to set up
an Open Platform Communications (OPC) server and use the Simulation Data Inspector in Simulink to
visualize and monitor the logging data.

Set Up and Download Code to the Studio 5000 IDE

The following procedure shows you how to create a Studio 5000 project to import the generated
logging code. You can use a similar procedure to import the generated code into an existing project.
Start the Studio 5000 IDE and create project with the name ext demol.
Import the generated ext demo.L5X to the Add-On Instructions tree node of the project.
In the MainProgram node, delete the ladder MainRoutine and create an ST MainRoutine
node.

New Routine ==

Narne WanRoutng ok

Descrption:

4 In ST MainRoutine, define the following tags:

Tag Name Tag Type
i0_Subsystem Subsystem

i@ Subsystem val Subsystem log
Init BOOL

Y1 REAL

Y2 REAL

Y3 DINT

5 The tag definition looks like the following in Studio 5000 IDE, i® Subsystem tag is the
instance of the top subsystem AOI, the 10 Subsystem val tag is the log data with structure
type Subsystem log. Set the initial value of init tag to 1.

=312 |Usage |arasFor |Base T [Data Type |escaption | Extemal Acc [Consta [Styie: [|
Local Subsystem ReadWnte
system_val Local Subsystem_log ReadWiite

Local BOOL ReadWnte |

Decimal
Float
Float
Decimal

Local REAL ReadWiite
Local REAL Read/Wiite

Local [oINT ReadWite |

oojooo(oo

6 Double-click MainRoutine tree node and type in the following code. The statement
Subsystem(i0 Subsystem, 23, Y1, Y2, Y3, i0 Subsystem val) calls the logging
method (ssmethod value=23) to log in data to the i@ Subsystem val tag.

13-7

13 External Mode

13-8

7

Compile the project in Studio 5000 IDE, connect, and download to the PLC target.

Configure RSLinx OPC Server

1
2

Start RSLinx Classic Gateway, select the menu item DDE/OPC->Topic Configuration.

In the resulting pop-up dialog box, create a topic ext demol by using the New button. Select the
target PLC from the PLC list.

| Topicliat 0243 Source | D.ta Collection | Advanced Commmacation

_domat P Autabromse 1|

- e Concel

o) o) [eo]) e)l [o] [
Click Yes button to update the topic (ext demol).

To verify that the log data is set up on the OPC server, select the menu item Edit->Copy
DDE/OPC Link.The i0 Subsystem val tag for log data must be shown on the RSLinx OPC
Server.

Copy DDE/ORC Link ? X

This sets up an Edt/Copy Link. Other programs may use this to initiate 2 DDE/OPC connection. Use thes
Edit/Paste Link command

Fiter. [Dataype: [Notive ~l
i RSLinx OPC Server (Node: <Local>)

& i0_MATLABFunction

@051
@ 151

Data Table Address: [
Block Size: [1
Colmns pecRow: [T

0K Cancel Help

Use PLC External Mode Commands to Stream and Display Live Log
Data

After the RSLinx OPC Server is configured, you can use the PLC external mode commands to connect
to the server, stream, and display live logging data on the Simulation Data Inspector. The log data
information is in the plc log data.mat file which can be found in plcsrc folder. You can use the
plcdispextmodedata function to display the contents of the MAT-file. In the MATLAB command,

type:

>>cd plcsrc
>>plcdispextmodedata plc_log data.mat

Use the Simulation Data Inspector to Visualize and Monitor the Logging Data

Log data:

#1: Y1: LREAL

#2: Y2: LREAL

#3: Y3: LREAL

#4: io Chart.out: DINT

#5: io_Chart.ChartMode: DINT

#6: io Chart.State A: BOOL

#7: io Chart.State B: BOOL

#8: io Chart.State C: BOOL

#9: io Chart.State D: BOOL

#10: io Chart.is active c3 Subsystem: USINT
#11: io MATLABFunction.y: LREAL
#12: io MATLABFunction.i: LREAL
#13: io Sl.y: LREAL

#14: io S1.UnitDelay DSTATE: LREAL
#15: 11 S1.y: LREAL

#16: 11 S1.UnitDelay DSTATE: LREAL

The format for the log data information is index number, name, and type. The log data for non-top
subsystem function block output and state variables are named using the dot notation to represent
the function block instances that own the data. The index and name of the log data can be used with
the plcrunextmode command to specify a subset of log data for streaming and visualization.

Use the plcrunextmode function to connect to the OPC server and stream log data. For example,
executing plcrunextmode ('localhost', 'studio5000', 'ext demol’,

'plc_log data.mat'); command streams live log data for the example model in to Simulation
Data Inspector.

The plcrunextmode command continues to run and stream log data. To exit streaming, type Ctrl-C
in MATLAB to stop.

See Also
plcdispextmodedata | plcrunextmode

More About
. “External Mode Logging” on page 13-2

. “Generate Structured Text Code with Logging Instrumentation” on page 13-3

13-9

Ladder Diagram Instructions

14 Ladder Diagram Instructions

Instructions Supported in Ladder Diagram

The supported ladder diagram instructions are useful while importing the ladder into Simulink. The
instructions can be categorised into two:

* Instructions that are implemented in Simulink using ladder diagram blocks with same name

* Instructions that are implemented in Simulink using other ladder diagram blocks.

The table lists the instructions that map to blocks in Simulink

L5X Instructions Ladder Model Blocks
ADD ADD Block
AFI AFT Block
AND AND Block
CLR CLR Block
COP COP Block
CTD CTD Block
CTU CTU Block
DIV DIV Block
EQU EQU Block
FBC FBC Block
FLL FLL Block
GEQ GEQ Block
GRT GRT Block
JMP JMP Block
LBL LBL Block
LEQ LEQ Block
LES LES Block
MCR MCR Block
MOV MOV Block
MUL MUL Block
NCP NCP Block
NEQ NEQ Block
NOT NOT Block
OR OR Block
OTE OTE Block
OTL OTL Block
OTU OTU Block
RES RES Block
RTO RTO Block

14-2

Instructions Supported in Ladder Diagram

L5X Instructions Ladder Model Blocks
SUB SUB Block

TND TND Block

TOF TOF Block

TON TON Block

XIC XIC Block

XI0 XIO Block

The special instructions that are implemented using another block in Simulink are:

* JSR instruction is implemented by using a Subroutine block.
* AOI call instruction is implemented by using an Inline AOI block

14-3

Ladder Diagram Blocks

15 Ladder Diagram Blocks

Ladder Diagram Blocks

15-2

The Ladder Diagram Blocks that are a part of Ladder Diagram Library are listed.

XIC XIO OTE OTL
OTU TON TOF RTO
CTU CTD RES JMP
LBL TND AFI NOP
MCR ADD SUB MUL
DIV FRD CPT AND
OR NOT ONS OSR
OSF NEQ EQU
LEQ GEQ LES GRT
MOV CLR COP FLL
Power Rail Start Power Rail Terminal RungTerminal Junction
Variable Read Variable Write PLC Controller Task
Program Subroutine Function Block (AOI)

Fixed Point Code Generation

* “Block Parameters” on page 16-2
* “Model Parameters” on page 16-3
* “Limitations” on page 16-4

16 Fixed Point Code Generation

Block Parameters

If the block in the subsystem has a Signal Attributes tab, navigate to that tab.
For the Integer rounding mode parameter, select Round.

Clear the Saturate on integer overflow check box.

For the Output data type parameter, select a fixed-point data type.

Click the Data Type Assistant button.

For the Word length parameter, enter 8, 16, or 32.

For the Mode parameter, select Fixed point.

00 N O 1 A W N M

For the Scaling parameter, select Binary point.

Main | Signal Attributes | Parameter Atributes |

Output minimum: Output maximum:

a 0

Output data type: fixdt(1,16,0) =

Data Type Assistant

Made: Signedness: Word length: 16

Scaling: Binary point ~ | Fraction length: 0

Data type override: [Inherit vl [Calculate Best-Precision Scaling

Fixed-point details

[] Lock output data type setting against changes by the fixed-point tools

Integer rounding mode: |Round -

[T] Saturate on integer overflow

9 Click OK.

16-2

Model Parameters

Model Parameters

In model Configuration Parameters dialog box, click the Hardware Implementation node.
For the Device vendor parameter, select Generic.

For the Device type, select Custom.

For the Signed integer division rounds to, select Zero.

For the Number of bits, set char to 16.

g A W N R

Embedded hardware (simulation and code generation)

Device vendor: [Generic v] Device type: [Custom
Number of bits Largest atomic size
har: 16 hort: 16 int: 32
char sno n integer: [Char
long: 32 float: 32 double: |64
floating-point: [None
native: 32 pointer: |32
Byte ordering: [Unspeciﬁed - | Signed integer division rounds to: |Zero

Shift right on a signed integer as arithmetic shift

Emulation hardware (code generation only)

Mone

16-3

16 Fixed Point Code Generation

Limitations

1 64-bit fixed-point data type is not supported.

16-4

Generating PLC Code for Multirate
Models

17 Generating PLC Code for Multirate Models

Multirate Model Requirements for PLC Code Generation

17-2

In this section...

“Model Configuration Parameters” on page 17-2

“Limitations” on page 17-2

Model Configuration Parameters
Before generating Structured Text from a multirate model, you must configure the model as follows:
* Solver options that are recommended or required for PLC code generation:

+ Type:Fixed-step.
* Solver:Discrete(no continuous states). Other fixed-step solvers could be selected, but
this option is usually best for simulating discrete systems.

+ Tasking mode: Must be explicitly set to SingleTasking. Do not set Tasking modeto Auto
* Change any continuous time signals in the top level subsystem to use discrete fixed sample times.

When you deploy code generated from a multirate model, you must run the code at the fundamental
sample rate.

Limitations
These are the limitations when generating Structured Text from multirate models:

* The B&R Automation Studio IDE is not supported for multirate model code generation.

Generating PLC Code for MATLAB
Function Block

* “Configuring the rand function for PLC Code generation” on page 18-2

* “Width block requirements for PLC Code generation” on page 18-3

» “Workspace Parameter Data Type Limitations” on page 18-4
“Limitations” on page 18-5

18 Generating PLC Code for MATLAB Function Block

Configuring the rand function for PLC Code generation

18-2

Simulink PLC Coder generates Structured Text code for MATLAB Function blocks and Stateflow
charts that use rand functions from the library. The rand function is implemented using a pseudo
random number generator that only works with PLC IDEs supporting the uint32 data type. The
software has conformance checks to report diagnostics for incompatible targets. Currently, the
following targets have been tested for rand function support.

3S-Smart Software Solutions CODESYS Version 2.3 or 3.3 or 3.5 (SP4 or later)
B&R Automation Studio 3.0 or 4.0

Beckhoff TwinCAT 2.11 or 3

OMRON Sysmac Studio Version 1.04, 1.05, 1.09 or 1.12

Rexroth IndraWorks version 13V12 IDE

Generic

PLCopen XML

Width block requirements for PLC Code generation

Width block requirements for PLC Code generation

Use a MATLAB Function block instead. In the MATLAB function on the block, use the Llength
function to compute input vector width.

18-3

18 Generating PLC Code for MATLAB Function Block

Workspace Parameter Data Type Limitations

18-4

If the data type of the MATLAB work space parameter value does not match that of the block
parameter used in your model, the value of the variable in the generated code is set to zero.

If you specify the type of the Simulink.Parameter object by using the DataType property, use a
typed expression when assigning a value to the parameter object. For example, if the
Simulink.Parameter object K1 is used to store a value of the type single, use a typed expression
such as single(0.3) when assigning a value to K1.

K1 = Simulink.Parameter;
K1.Value = single(0.3);
K1.StorageClass = 'ExportedGlobal';
K1.DataType = 'single';

Limitations

Limitations

These are the limitations when generating Structured Text from MATLAB Fubnction blocks :

» Cell arrays in MATLAB Function blocks

* In MATLAB Function blocks, only standard MATLAB functions are supported. Functions from
toolboxes have not been tested and may result in issues during code generation or produce
incorrect results. For a list of standard functions supported for code generation, see the items
listed under the MATLAB category in the “Functions and Objects Supported for C/C++ Code
Generation” table.

18-5

Model Architecture and Design

* “Fixed Point Simulink PLC Coder Structured Text Code Generation” on page 19-2
* “Generating Simulink PLC Coder Structured Text Code For Multirate Models” on page 19-7
* “MATLAB Function Block Simulink PLC Coder Structured Text Code Generation” on page 19-9

19 Model Architecture and Design

Fixed Point Simulink PLC Coder Structured Text Code
Generation

19-2

In this section...

“Block Parameters” on page 19-2

“Model Parameters” on page 19-3

“Limitations” on page 19-4

Block Parameters

At the MATLAB command prompt type plcdemo fixed point. Once the example model opens,
follow these instructions to configure the model for Structured Text code generation.

1

© 00 N o U & W

If the block in the subsystem has a Signal Attributes tab, navigate to that tab and jump to step
3.

If there are no blocks in the subsystem with a Signal Attributes tab use the Data Type
Conversion block. Add the Data Type Conversionblock to the model and continue to the next
step.

For the Integer rounding mode parameter, select Round.

Clear the Saturate on integer overflow check box.

For the Output data type parameter, select a fixed-point data type.
Click the Data Type Assistant button .

For the Word length parameter, enter 8, 16, or 32.

For the Mode parameter, select Fixed point.

For the Scaling parameter, select Binary point.

Main Signal Attributes | Parameter Attributes |

Qutput minimum: Output maximum:

a 0

Output data type: fixdt(1,16,0) - <<

Data Type Assistant

Mode: |Fixed point - | Signedness: Signed ~ [Word length: 16
Scaling: Binary point ~ | Fraction length: 0

Data type override: lInherit v‘ [Calculate- Best-Precision Scaling

Eixed-point details

[T] Lock output data type setting against changes by the fixed-point tools

Integer rounding mode: IRound -

[T] saturate on integer overflow

Fixed Point Simulink PLC Coder Structured Text Code Generation

Data Type Conversion

Convert the input to the data type and scaling of the output.
The conversion has two possible goals. One goal is to have the Real World Values of the input and the output

be equal. The other goal is to have the Stored Integer Values of the input and the output be equal.
Overflows and quantization errors can prevent the goal from being fully achieved.

Parameters

Output minimum: Output maximum:

3 |HRE
Output data type: |1“|J|<|:1t|:1,llfr,13r 'DataTypeOverride’, "Off")
Data Type Assistant

Mode: |Fixed point = | Signedness: Signed * | Word length: |1Er |
Scaling: Binary point = | Fraction length: |13 |
Data type override: | Off hd

Calculate Best-Precision Scaling
Fixed-point details

Lock output data type setting against changes by the fixed-point tools
Input and output to have equal: Real World Value (RWV)
Integer rounding mode: | Round

[] saturate on integer overflow

OK Cancel Help Apply
10 Click OK.

Model Parameters

In the Model Configuration Parameters dialog box, click the Hardware Implementation node.

For the Device vendor parameter, select Generic or Custom Processor. If you select Custom
Processor proceed to step 4.

3 For the Device type, select Custom.

For the Signed integer division rounds to, select Zero.
5 For the Number of bits, set char to 16.

19-3

19 Model Architecture and Design

19-4

v

vy ¥ ¥ wr

Embedded hardware (simulation and code generation)

Device vendor: IGeneri,c v] Device type: ’Cu.stom
Number of bits Largest atomic size
char: 16 short: 16 int: 32 e lchar
long: 32 float: 32 double: &4

.) floating-point: lNone
native: 32 pointer: |32

Byte ordering: [Unspeci.ﬁ.ed. ~ | Signed integer division rounds to: |Zero
Shift right on a signed integer as arithmetic shift

Emulation hardware (code generation only)

None

Salver Hardware board: |None
Data Import’Export

Math and Data Types
Diagnostics Device vendor: |Custom Processor

Code Generation system target file: erttlc

Hardware Implementation ¥ Davice details

Model Referencing

Simulation Target Number of bits Largest atomic size
Code Generation char: |16 short: 16 int: 32 integer: Char
Caoverage
HOL Code Generation long: 32 long long: 64 float: 32 floating-point: |None
PLC Code Generation double: 64 native: 32 pointer; |32
size t |32 ptrdiff_t- |32

Byte ordering: |Unspecified - | Signed integer division rounds to: |Zero

Shift right on a signed integer as arithmetic shift

[] Support long long

OK Cancel Help
Limitations

* 64 bit fixed-point data type not supported.

Apply

Fixed Point Simulink PLC Coder Structured Text Code Generation

* The data type and value type must match for fixed-point tunable parameters of type

Simulink.Parameter.

Simulink.Parameter: efi_param *
Value: | <1x1 embedded.fi=»
|
Data type: | fixdt(1,16,15) V[»>
Dimensions: |[1 1]
Minimum: |[] | :
Stored integer values (derived)
Minimum: | [1] |
Unit: | |
Code generation options
Storage class: | ExportedGlobal -
Identifier: |]L]r |
/I,
Alignment: | -1]t J[|
Description: u
. - Mo mismatch
2> 2Ll war.value
- between value
ans = and Data type
fields
0.2750
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 1&
FractionLength: 15
Cancel Help Apply

* Scaling parameter type Slope and bias is not supported for code generation.

You are now ready to:

* “Prepare Model for Structured Text Generation” on page 1-3

* “Check System Compatibility for Structured Text Code Generation” on page 1-6

19-5

19 Model Architecture and Design

* “Generate and Examine Structured Text Code” on page 1-9

19-6

Generating Simulink PLC Coder Structured Text Code For Multirate Models

Generating Simulink PLC Coder Structured Text Code For
Multirate Models

Multirate Model Requirements for PLC Code Generation

At the MATLAB command prompt type in plcdemo _multirate. Once the demo model opens up
follow the instructions below to configure the model for Structured Text code generation:

Model Configuration Parameters
Before generating Structured Text from a multirate model, you must configure the model as follows:
* Solver options that are recommended or required for PLC code generation:

+ Type:Fixed-step.
* Solver:Discrete(no continuous states). Other fixed-step solvers could be selected, but
this option is usually best for simulating discrete systems.

» Tasking mode: Must be explicitly set to Single Tasking. Do not set Tasking modeto Auto

* Change any continuous time input signals in the top level subsystem to use discrete fixed sample
times.

* In the top-level model, right-click the Subsystem block and select Block Parameters
(Subsystem).

* In the resulting block dialog box, select Treat as atomic unit.

19-7

19 Model Architecture and Design

Block Parameters: SimpleSubsystern *

Subsystem

Select the settings for the subsystem block. To enable parameters for code
generation, select "Treat as atomic unit’.

Main Code Generation
Show port labels | FromPortIcon

Read/Write permissions: ReadWrite v

MName of error callback function:

Permit hierarchical resolution: | All
Treat as atomic unit
[] Minimize algebraic loop occurrences

Sample time (-1 for inherited):

-1

Treat as grouped when propagating variant conditions

‘)- Cancel Help Apply

When you deploy code generated from a multirate model, you must run the code at the fundamental
sample rate.

Limitations

The B&R Automation Studio does not support structured text code generation from multirate models.

You are now ready to:

* “Check System Compatibility for Structured Text Code Generation” on page 1-6
* “Generate and Examine Structured Text Code” on page 1-9

19-8

MATLAB Function Block Simulink PLC Coder Structured Text Code Generation

MATLAB Function Block Simulink PLC Coder Structured Text
Code Generation

In this section...

“Configuring the rand function for PLC Code Generation” on page 19-9
“SimulinkWidth Block Requirements for PLC Code generation” on page 19-9
“Workspace Parameter Data Type Limitations” on page 19-9

“Limitations” on page 19-9

Configuring the rand function for PLC Code Generation

Simulink PL.C Coder generates structured text code for MATLAB Function blocks and Stateflow
charts that use the MATLAB rand function. You implement the rand function by using a pseudo
random number generator that works with PLC IDEs supporting the uint32 data type. The software
has conformance checks to report diagnostics for incompatible targets. These targets have been
tested for rand function support.

* 3S-Smart Software Solutions CODESYS Version 2.3 or 3.3 or 3.5 (SP4 or later)

* B&R Automation Studio 3.0 or 4.0

* Beckhoff TwinCAT 2.11 or 3

* OMRON Sysmac Studio Version 1.04, 1.05, 1.09 or 1.12

» Rexroth IndraWorks version 13V12 IDE

* PLCopen XML

SimulinkWidth Block Requirements for PLC Code generation

Instead of using the Simulink Width block , inside the MATLAB Functionuse the MATLAB length
function to compute the input vector width.

Workspace Parameter Data Type Limitations

If the data type of the MATLAB work space parameter value does not match that of the block
parameter in your model, the value of the variable in the generated code is set to zero.

If you specify the type of the Simulink.Parameter object by using the DataType property, use a
typed expression when assigning a value to the parameter object. For example, if the
Simulink.Parameter object K1 stores a value of the type single, use a typed expression such as
single(0.3) when assigning a value to K1.

K1 = Simulink.Parameter;
K1.Value = single(0.3);
K1.StorageClass = 'ExportedGlobal';
K1l.DataType = 'single';

Limitations

When generating structured text from MATLAB Function blocks, these are the limitations :

19-9

19 Model Architecture and Design

* Cell arrays in MATLAB Function blocks are not supported.
* Ifyou want to use a function from a toolbox within the MATLAB Function block, you must check
the toolbox function page to see if that block supports code generation from Simulink PLC Coder.

* When generating a testbench for models that use the rand function , different rand output values
may be generated when gathering test vectors vs code generation, leading to testbench
verification failures . To prevent these failures make sure that the rand output value remains
constant across different model compilations.

19-10

PLC Coder Code Deployment

* “Deploy Structured Text” on page 20-2
* “Deploy Ladder Diagram” on page 20-5

20 PLC Coder Code Deployment

Deploy Structured Text

20-2

In this section...

“Learning Objectives” on page 20-2

“Prerequisites” on page 20-2

“Workflow” on page 20-2

“Importing Generated Structured Text Code Manually” on page 20-2

Using Simulink PLC Coder, you can generate structured text and test bench code, and then import
the generated code into the target IDE.

Learning Objectives

In this tutorial you learn how to:

* Openthe plcdemo simple subsystem model and prepare the model for code generation.
» Verify the code that you generated.
* Automatically or manually import your generated code into your target IDE.

Prerequisites

¢ Simulink PLC Coder
» Target IDE folder location (for automatic import).

Workflow

Open the plcdemo _simple subsystem model.

2 Open the model settings and set Solver Selection to Fixed-step and Solver to discrete(no
continuous states).

3 Ifyour target IDE is in the “PLC IDEs That Qualify for Importing Code Automatically” on page 1-
17, see “Generate and Automatically Import Structured Text Code” on page 1-17. Otherwise ,
see “Importing Generated Structured Text Code Manually” on page 20-2

Importing Generated Structured Text Code Manually

If your target IDE does not automatically import generated code:
1 Right-click the Subsystem block and select PLC Code > Options.

The Configuration Parameters dialog box is displayed.

Deploy Structured Text

& Configuration Parameters: simple_subsystem/Configuration (Active) - O X

Q

Solver

Data Import/Export

Math and Data Types Target IDE: Phoenix Contact PC WORX 6.0 -
» Diagnostics +| Show full target list
Hardware Implementation Target IDE Path: C:\Program Files\Phoenix Contact\Software Suite 150

Maodel Referencing
Simulation Target
Code Generation +| Generate testbench for subsystem
Coverage

HDL Code Generation
Design Verifier

¥ PLC Code Generation

3
»
»
4

General options

Code Output Directory: | fplcsre

Include testbench diagnestic code

Target specific options

Comments Generate functions instead of function block
Optimization Emit Datatype worksheet tags
Identifiers B . od dat
Repurt uppress auto-generate: ata t)fpes
0K Cancel Help Apply
2 Onthe PLC Code Generation pane, select an option from the Target IDE list, for example, 3S

CoDeSys 2.3.

The default Target IDE list displays the full set of supported IDEs. To see a reduced subset of the
target IDEs supported by Simulink PLC Coder, disable the option Show full target list. To
customize this list, use the plccoderpref function.

Click Apply.
Click Generate code.

This button:

* Generates Structured Text code (same as the PLC Code > Generate Code for Subsystem
option)

* Stores generated code in model name.exp (for example,
plcdemo simple subsystem.exp)

When code generation is complete, a View diagnostics hyperlink appears at the bottom of the
model window. Click this hyperlink to open the Diagnostic Viewer window.

20-3

20 PLC Coder Code Deployment

Diagnostic Viewer
BE-E- &~ &-| 7~ [@&

plcdemo_simple_subsystem

* PLC Coder Generate Code @ 1
33 PM Elapse
PLC code generation successful for
'plecdemo_simple_subsystem/SimpleSubsystem’.

Generated files:
LNplesrchplcdemo simple subsystem.exp

Component: PLC Coder | Category: PLC Coder

This window has links that you can click to open the associated files. For more information, see
“Files Generated by Simulink PLC Coder” on page 1-14.

To import generated code into your target IDE import the generated files manually into your
target IDE.

20-4

Deploy Ladder Diagram

Deploy Ladder Diagram

In this section...

“Learning Objectives” on page 20-5

“Prerequisites” on page 20-5

“Workflow” on page 20-5

“Importing Generated Ladder Diagram Code Manually” on page 20-5

UsingSimulink PLC Coder you can generate Structured Text, along with test bench code and import
the generated code into the target IDE.

Learning Objectives

In this tutorial you will learn how to:

* Openthe plcdemo ladder timers model and prepare the model for code generation.
» Verify the code you generated.
* Have your generated code either automatically or manually imported into your target IDE.

Prerequisites

* Simulink PLC Coder
* You have access to either Rockwell Automation RSLogix 5000 or Studio 5000 IDE.

Workflow

Open the plcdemo ladder timers model.

2 Open the model settings and set Solver Selection to Fixed-step and Solver to discrete(no
continuous states).

3 See “Importing Generated Ladder Diagram Code Manually” on page 20-5

You can manually import the generated L5X file into RSLogix 5000 or Studio 5000 IDEs.

Importing Generated Ladder Diagram Code Manually

For L5X import file generation:
1 Right-click the Motor Controller block and select PLC Code > Options.

This displays the PLC Code Generation configuration parameters window:

20-5

20 PLC Coder Code Deployment

& Configuration Parameters: simple_subsystem/Configuration (Active) - O
Salver General options

Data Import/Export
Math and Data Types Target IDE: Phoenix Contact PC WORX 6.0 -
Diagnostics Show full target list

Hardware Implementation
Maodel Referencing
Simulation Target

Code Generation Generate testbench for subsystem
Coverage

HDL Code Generation
Design Verifier

¥ PLC Code Generation

v

Target IDE Path: C:\Program Files\Phoenix Contact\Software Suite 150
Code Output Directory: | fplcsre

»

4 - -
[] Include testbench diagnostic code

»

»

Target specific options

Comments [] Generate functions instead of function block
Optimization [] Emit Datatype worksheet tags
Identifiers

uppress auto-generated data types
Report s t ted data ty

0K Cancel Help Apply

20-6

On the PLC Code Generation pane, from the Target IDE list, select either Rockwell Studio
5000:A0I or Rockwell RSLogix5000:A0I.

In Target IDE Path, enter the path to the folder where you want the generated L5X file to be
saved. In, Code Output Directory, enter the name of the folder to save the generated L5X file.
Click Apply.

Right-click the Motor Controller block and select PLC CodeGenerate Code for
Subsystem .

Upon, completion of code generation the Diagnostic window displays a message with the path to
the generated L5X file.

Deploy Ladder Diagram

"i Diagnostic Viewer — O x

Diagnostics

E-E B -)%)| F ~ [@]|[a sercr i & @~ Q@

pledemo_ladder_timers €

» Update Diagram @ 1

Elapsed: 18 sec
Unable to write to Simulink cache file 'C:plcdemo_ladder_timers.slxc' because you do not have
write permission for the file.

Component: Simulink | Category: Model warning

Unable to write to Simulink cache file 'C:'\plcdemo_ladder_timers.slxc' because you do not have
write permission for the file.

Component. Simulink | Category: Model warning
Emit PLC code to file.
Component: PLC Coder | Category: PLC Coder

PLC ladder code generation successful for 'plcdemo_ladder_timers/Motor Controller’.

##% Generated ladder files:
plesrchplcodemo ladder timers gen.l5X

Component: PLC Coder | Category: PLC Coder ladder code generation

20-7

Simulink PLC Coder Structured Text
Code Generation For Simulink Data
Dictionary (SLDD)

* “Structured Text Code Generation Support for Simulink Data Dictionary” on page 21-2

* “Generate Structured Text Code For Simulink Data Dictionary Defined Model Parameters”
on page 21-3

21 Simulink PLC Coder Structured Text Code Generation For Simulink Data Dictionary (SLDD)

Structured Text Code Generation Support for Simulink Data
Dictionary

21-2

Simulink Data Dictionary (SLDD) is the preferred Model-Based-Design (MBD) data modeling and
management tool. SLDD provides advantages such as data separation, logical partitioning,
traceability, and so on. To achieve traceability between your generated code and model, and for code
reusability and model and data sharing, use SLDD

Limitations

Simulink PLC Coder does not support:

* The mixed use of the base workspace and SLDD files. Use the Simulink migration utility to
migrate your entire base workspace to SLDD files.

* Model workspace parameters and signals for code generation.

* MATLAB variables in SLDD files for code generation. To generate code convert these variables to
Simulink.Parameter objects.

Simulink.parameter types that have StorageClass options other than ExportedGlobal and
ImportedExtern are auto converted to ExportedGlobal StorageClass during code generation.

See Also

More About
. “What Is a Data Dictionary?”

. “Generate Structured Text Code For Simulink Data Dictionary Defined Model Parameters” on
page 21-3

. Simulink.Parameter
. Simulink.Signal

Generate Structured Text Code For Simulink Data Dictionary Defined Model Parameters

Generate Structured Text Code For Simulink Data Dictionary
Defined Model Parameters

In this section...

“Learning Objectives” on page 21-3
“Requirements” on page 21-3

“Workflow” on page 21-3

Learning Objectives

In this tutorial, you learn how to:

* Openthe plcdemo tunable params model and migrate the model to use Simulink Data
Dictionary (SLDD).

* Generate code for the model.

Requirements

* Base workspace variable definition must match the variable definition in the SLDD file. If there is
a mismatch, Simulink PL.C Coder displays an error during the code generation process.

* If your model has a Data Store Memory(DSM) object, you must have a matching
Simulink.Signal object in the SLDD file.

Workflow

Migrate the plcdemo tunable params model base workspace variables to an SLDD file for code
generation:

Note Copy the plcdemo tunable params model to your current working directory prior to
starting the workflow.

1 Open the plcdemo tunable params model .
From the Simulink Editor Modeling tab, click Model Explorer.

Under the Model Hierarchy pane, click Base Workspace . The Contents pane displays the
base workspace variables.

4 Right-click K1, K2, and K3. Choose the Convert to parameter object option to convert
them to the Simulink.Parameter type.

Right-click plcdemo tunable params, and then select Properties.
Select the External Data tab.
Click New. Enter the file name as plcdemo_tunable params.

Click the Migrate data button. Then click Apply in response to the Link Model to Data
Dictionarymessage and Migrate in response to the Migrate Data message.

9 Click OK.

0 N oo un

21-3

21 Simulink PLC Coder Structured Text Code Generation For Simulink Data Dictionary (SLDD)

21-4

10

To open the dictionary, in the Simulink Editor, click the model data badge in the bottom left
corner, then click the External Data link. To inspect the contents of the dictionary, in the Model
Explorer Model Hierarchy pane, under the External Data node, expand the dictionary node.

To generate code for the model, see “Generate and Examine Structured Text Code” on page 1-9 .

See Also

More About

. Simulink.Parameter

. Simulink.Signal

. Data Store Memory

. “Migrate Models to Use Simulink Data Dictionary”

. “Structured Text Code Generation Support for Simulink Data Dictionary” on page 21-2

Simulink PLC Coder Structured Text
Code Generation For Enumerated Data

Type

* “Structured Text Code Generation for Enum To Integer Conversion” on page 22-2
+ “IDE Limitations” on page 22-3

22 Simulink PLC Coder Structured Text Code Generation For Enumerated Data Type

Structured Text Code Generation for Enum To Integer
Conversion

Autogenerate structured text code for enum to integer conversion model.

Load enum class

For this example, the myEnum.m script loads the enum class definition. Place this script file in the
same project folder as the plc_enum to_ int model file.

Open the model

open_system('plc enum to int.slx")

_/ pl1 NED)

Subsystem

This model shows PLC code generation for enum to integer type conversion.

To generate PLC code, open PLC Coder App. Select Settings->PLC Code Generation->General options->Target IDE and
choose Target IDE that supports enum type. Select Settings->PLC Code Generation->|dentifiers->Generate enum cast function.
Click the Subsystem block and click the Generate PLC Code button.

The Diagnostic Viewer displays hyperlinks to the generated code files, click the links to view the generated files.

Copyright 2000-2020 The MathWarks, Inc.

See Also

More About

. “Use Enumerated Data in Simulink Models”
. “Code Generation for Enumerations”

22-2

IDE Limitations

IDE Limitations

The following IDEs support enum data type:

3S-Smart Software Solutions CODESYS Version 2.3 or 3.3 or 3.5 (SP4 or later). To generate code
enable “Generate enum Cast Function” on page 12-25 option.

PHOENIX CONTACT Software MULTIPROG 5.0 or 5.50. To generate code enable “Override Target
Default enum Name Behavior” on page 12-24 and “Generate enum Cast Function” on page 12-25
options.

Selectron CAP1131 IDE. To generate code enable “Override Target Default enum Name Behavior”
on page 12-24 and “Generate enum Cast Function” on page 12-25 options.

Beckhoff TwinCAT 2.11 or 3. To generate code enable “Override Target Default enum Name
Behavior” on page 12-24 and “Generate enum Cast Function” on page 12-25 options.

Rexroth IndraWorks version 13V12 IDE. To generate code enable “Override Target Default enum
Name Behavior” on page 12-24 and “Generate enum Cast Function” on page 12-25 options.

See Also

22-3

Distributed Code Generation with
Simulink PLC Coder

» “Distributed Model Code Generation Options” on page 23-2

* “Generated Code Structure for PLC RemoveSSStep” on page 23-3

* “Generated Code Structure for PLC PreventExternalVarInitialization” on page 23-5
* “PLC RemoveSSStep for Distributed Code Generation” on page 23-7

* “Structured Text Code Generation for Subsystem Reference Blocks” on page 23-10
» “Distributed Code Generation Limitations” on page 23-12

23 Distributed Code Generation with Simulink PLC Coder

Distributed Model Code Generation Options

23-2

Distributed models allow you to model complex systems as individual components and simulate the
components at different sample times or cycle rates. The Simulink PLC Coder distributed model code
generation options allow you to generate structured text code for individual components of the model
and integrate the generated code externally. Use this table to decide the code generation option to
use based on your distributed model design and requirements.

Goal Option

Generate code for individual model subsystems | “Keep Top-Level ssmethod Name the Same as the
and integrate the generated code externally. Non-Top Level Name” on page 12-33

Prevent initialization of externally defined “Remove Initialization Statements for Externally
variables. Defined State Variables” on page 12-34

The distributed code generation options are model-specific, and when selected at the top level, are
enabled for all the model subsystems. Once you enable the option, it stays on. When generating code

for individual subsystems, you might see unintended behavior in the generated code due to the option
remaining on.

See Also

More About

. “Generated Code Structure for PLC_RemoveSSStep” on page 23-3
. “Generated Code Structure for PLC PreventExternalVarlnitialization” on page 23-5

Generated Code Structure for PLC_RemoveSSStep

Generated Code Structure for PLC_RemoveSSStep

The example shows you how to enable the PLC_RemoveSSStep option for your model, generate code
and display the comparison between code generated with the PLC_RemoveSSStep option enabled

and then disabled.

1 Open the UsePLC RemoveSSStepforDistributedCode GenerationExample example:

openExample('plccoder/UseRemoveSSStepForDistributedCodeGenerationExample')

aua A W N

Open the mSystemIntegration model.
Open the Simulink PLC Coder app, and then select the Subsysteml block. .
Click Settings. Navigate to PLC Code Generation > Identifiers. Select the Keep top level

Copy all the model files to a folder of your choice.

ssMethod name same as non-top level check box.

Click OK.
Click Generate PLC Code.
Select the Subsysteml block.

© 00 N O

Click Settings. Navigate to PLC Code Generation > Identifiers. Clear the Keep top level

ssMethod name same as non-top level check box.

10 Click Generate PLC Code.

This image shows a comparison between the code generated with PLC_RemoveSSStep enabled, and
then disabled. Removing SS_STEP enables easier external code integration of the different
subsystems because they all the same ssMethodType.

FUNCTION_BLOCK SubSysteml
VAR_INPUT
ssMethodType: SINT;
U: LREAL;
END_VAR
VAR_CUTPUT
¥: LREAL;
END VAR
VAR
UnitDelay DSTRTE:
END_VAR
CASE ssMethodType OF
S55_INITIRLIZE:
(* SystemInitialize for Atomic SubSystem: '<Root>/SubSysteml®
'<S1>/Unit Delay' *)

PLC_RemoveSSStep
Enabled

LREAL;

(* InitializeConditions for UnitDelay:
UnitDelay DSTATE := 0.0;
il d gof SystemInitialize for SubSystem:
gutputs for Atomic SubSystem: '<Root>/SubSysteml' *)
(* Gain: '<51>/Gain' incorporates:
Sum: '<S51>/Sum’
* UnitDelay: '<51>/Unit Delay' *)
¥ i= (U - UnitDelay DSTATE) * 0.5;
(* Update for UnitDelay: '<S1>/Unit Delay' *)
UnitDelay DSTATE := ¥:
(* End of Outputs for SubSystdm: '<Root>/SubSysteml' *)
END CASE;
END_FUNCTION_BLCCK
FUNCTICON_BLOCK TestBench
VAR_CUTPUT

'<Root>/SubSysteml"

See Also

*)

*)

—
~

28
29
30
31
32
33
34
35
36
37
38
3%
40
41
42
43
44
45
48
47
48
48
50
51
52
23
54
25
56
=7

FUNCTION_BLOCK SubSysteml
VAR _INPUT
ssMethodType:
U: LREARL:
END_VAR
VAR _OUTPUT
Y: LREAL:
END_VAR
VAR
UnitDelay DSTATE: LRERL;
END VAR
CASE ssMethodType OF
55_INITIALIZE:
(* SystemInitialize for Atomic SubSystem: '<Root>/SubSysteml' *)
'¢<S1>/Unit Delay' *)

SINT:

PLC_RemoveSSStep
Disabled

(* ImitializeConditions for UnitDelay:
UnitDelay DSTATE := 0.0;
(* End of SystemInitialize for SubSystem: '<Root>/SubSysteml' *)

55_STEP:
DUTpUts for Atomic SubSystem: '<Root>/SubSysteml®' *)

{* Gain: '<S1>/Gain' incorporates:

Sum: '<51>/Sum’
* UnitDelay: '<51>/Unit Delay' *)
Y := (U - UnitDelay DSTATE) * 0.5;

(* Update for UnitDelay: '<51>/Unit Delay' *)
UnitDelay DSTATE := Y¥;
(* End of Cutputs for SubSystem:
END_CASE;
END FUNCTICH BLOCE
FUNCTION_BLOCK TestBench

VAR _OUTPUT

'<Root>/SubSysteml" *)

“Keep Top-Level ssmethod Name the Same as the Non-Top Level Name” on page 12-33

23-3

23 Distributed Code Generation with Simulink PLC Coder

More About
. “Distributed Model Code Generation Options” on page 23-2

23-4

Generated Code Structure for PLC_PreventExternalVarinitialization

Generated Code Structure for

PLC PreventExternalVarinitialization

The example shows you how to enable the PLC_ PreventExternalVarInitialization option for
your model, generate code and display the comparison between code generated with the
PLC PreventExternalVarInitialization option disabled and then enabled.

1 Openthe PLC PreventExternalVarInitializationExample example:

openExample('plccoder/PreventExternalVarInitializationExample"')

aua A W N

Copy all the model files to a folder of your choice.

Open the External Var Distributed Codegen model.

Open the Simulink PLC Coder app, and select the Subsystem block.

Click Settings. Navigate to PLC Code Generation > Interface. Clear the Remove

initialization statements for externally defined state variables check box.

Click OK.
Click Generate PLC Code.
Select the Subsystem block.

© 00 N &

Click Settings. Navigate to PLC Code Generation > Interface. Set the Remove initialization

statements for externally defined state variables check box.

10 Click Generate PLC Code.

This image shows a comparison between the code generated with
PLC PreventExternalVarInitialization disabled, and then enabled. Removing initialization
statements for externally defined variables prevents the corruption of their data values.

FU'NETIDN_ELDCK Subsystem "> |28 FUNCTICN_BLOCK Subsystem]
VAR CUTPUT 29 VAR _OUTPUT
“Outl: LREAL: 30 Outl: LREAL;
ara: . L 3l Cut2: LREAL; PLC_PreventExternalVarinitialization
Cut2: LREAL: !
o PLC_PreventExternalVarlnitialization ™ &0 var —
TPTRR - Disabled - Enabled
VAR 33 VAR
|n==d init: BOOL := TRUE: | = 20 chilol: childl; > Remaoved
i0 childl: childl: 35 i0 childZ2: childz;
i0_child2: child2: 36 END VAR
END VAR 37 (* OQutport: '<Root>/Outl' *)
IF need_init THEN 38 10_childl(}):
{* Start for DataStoreMemory: '<Root>/DSExportedGlobal' * 3% Outl := i0_childl.Cutl;
DSExportedGlobal := 0.0; 40 (* OQutport: '<Root>/0ut2' *)
(* Start for DataStoreMemory: '<Root>/DSImportedExtern' * 41 i0_childz():
DSImportedExtern := 0.0; 42 Out2 := i0 childz.Outl;
ini = . 43 END FUNCTICN BLOCE
need init := FALSE; R) Removed
END IF: 44 FUNCTION BLOCK TestBench
(* Cutport: '<Root>/0Outl' *) 45 VAR COUTPUT
i0 childl{): 45 testVerify: BOOL := TRUE:
Cutl := 10 childl.Outl; 47 testCycleNum: DINT;
(* Cutport: '<Root>/0ut2' *) 43 END VER
4% VAR

i0_child2 ()
Cut2 := i0_child2.Outl;
END FUNCTICN BLOCK
FUNCTICN BLOCK TestBench
VAR CUTPUT
testVerify:

BOOL := TRUE;

50
51
52
53
54

tb Outl: ARRAY [0..50] OF LREAL;
cycle_Outl: LEEAL;

out_Outl: LEERL;

tb Out2Z: ARRAY [0..50] OF LREAL:
cycle OutZ: LREAL;

23-5

23 Distributed Code Generation with Simulink PLC Coder

See Also
“Remove Initialization Statements for Externally Defined State Variables” on page 12-34

More About
. “Distributed Model Code Generation Options” on page 23-2

23-6

PLC_RemoveSSStep for Distributed Code Generation

PLC_RemoveSSStep for Distributed Code Generation

Generate structured text code for different components of your model.
Open model

Open the model by using the following command:

open_system('mSystemIntegration');

23-7

23 Distributed Code Generation with Simulink PLC Coder

ui

Uz

e}

23-8

L Y 1)
1
SubSystem1
e L Y
L]
SubSystem2
4
>+ s 2)
Y2
e L Y
L]
SubSystem3

Mote: Before code generation, copy mSubSystem1, mSubSystem2,
mSubSystem3, and mSystemIntegration SLX files to the same folder
location in your current working directory (CWD).

PLC_RemoveSSStep for Distributed Code Generation

Configure Model Components for Distributed Code Generation

To autogenerate structured text code with the same ssMethod type for every component of your
model for external code integration later on, use Keep Top-Level ssMethod Name the Same as the
Non-Top Level Name. For more information, see “Keep Top-Level ssmethod Name the Same as the
Non-Top Level Name” on page 12-33 function.

Mark Externally Defined Variables

Open the Simulink PL.C Coder app. For more information, see Simulink PL.C Coder.
Select the TopSystem block.

Click Settings. Navigate to PLC Code Generation > Identifiers. In the Identifier Names
box enter Subsysteml, Subsystem2,Subsystem3.

4 Click OK.
Code Generation

Open the Simulink PL.C Coder app. For more information, see Simulink PL.C Coder.
Select the Subsysteml block.

Click Settings. Navigate to PLC Code Generation > Identifiers. Select the Keep top level
ssMethod name same as non-top level check box.

Click OK.
5 Repeat steps 2 through 4 for SubSystem2, SubSystem3, and TopSystem.

Generate Code for the Subsystem

To generate code for the individual subsystem use the plcgenerate code function:
plcgeneratecode('mSystemIntegration/TopSystem/SubSystem1');
plcgeneratecode('mSystemIntegration/TopSystem/SubSystem?2');
plcgeneratecode('mSystemIntegration/TopSystem/SubSystem3');

Generate Code for the Integrated Model

To generate code for the integrated model:

plcgeneratecode('mSystemIntegration/TopSystem');

23-9

23 Distributed Code Generation with Simulink PLC Coder

Structured Text Code Generation for Subsystem Reference
Blocks
This example shows how to autogenerate structured text code for subsystem reference blocks.
Open Simulink Model

To open the Simulink test bench model, use the following command.

open_system('mSubSysRefSystemIntegration')

% H Y

TopSystem
Mote: Before code generation, copy SSRefSubSystem1, SSRefSubSystem2,
SSRefSubSystem3, refSubSystem1, refSubsystem2, refSubSystem3 and

mSubSysRefSystemIntegration SLX files to the same folder location in your
current working directory (CWD).

Caopyright 2019 The Math\WWorks, Inc.

23-10

Structured Text Code Generation for Subsystem Reference Blocks

Generate Code for the Subsystem

To generate code for the subsystem use plcgeneratecode

generatedfiles = plcgeneratecode('mSubSysRefSystemIntegration/TopSystem');

#H##
#H##
#H##
#H##
###
###
#H##

Generating PLC code for 'mSubSysRefSystemIntegration/TopSystem'.

Using <a href="matlab:configset.showParameterGroup('mSubSysRefSystemIntegration', { 'PLC Cod
Begin code generation for IDE <a href="matlab:configset.showParameterGroup('mSubSysRefSystem
Emit PLC code to file.

Creating PLC code generation report <a href="matlab:web('C:\TEMP\Bdoc20b 1465442 5924\ib8F42
PLC code generation successful for 'mSubSysRefSystemIntegration/TopSystem'.

Generated files:

plcsrc\mSubSysRefSystemIntegrat:

See Also

More About

L]

“Subsystem Reference”
“Distributed Code Generation Limitations” on page 23-12

23-11

23 Distributed Code Generation with Simulink PLC Coder

Distributed Code Generation Limitations

The Simulink PLC Coder software does not support:

Code generation inside subsystem reference blocks.

Code generation for nested subsystem reference blocks.

See Also

23-12

Examples Book

* “Generate Structured Text Code for a Simple Simulink® Subsystem” on page 24-2

* “Generating Structured Text for a Simple Simulink® Subsystem without Internal State”
on page 24-7

* “Generating Structured Text for a Hierarchical Simulink® Subsystem with Virtual Subsystems”
on page 24-8

* “Generating Structured Text for a Hierarchical Simulink® Subsystem” on page 24-10

* “Generating Structured Text for a Reusable Simulink® Subsystem” on page 24-12

* “Generating Structured Text for a Simple Simulink® Subsystem Using Multirate” on page 24-14
* “Simulate and Generate Structured Text Code for a Stateflow® Chart” on page 24-16

* “Generating Structured Text for a MATLAB® Block” on page 24-19

* “Generating Structured Text for a Feedforward PID Controller” on page 24-20

* “Mapping Tunable Parameters to Structured Text” on page 24-22

* “Mapping Tunable Parameters Defined Using Simulink.Parameter Objects to Structured Text”
on page 24-24

* “Simulate and Generate Code for Speed Cruise Control System” on page 24-28

* “Variable Step Speed Cruise Control System” on page 24-30

* “Simulate and Generate Code for Airport Conveyor Belt Control System” on page 24-32

* “Generating Structured Text for Simulink® Model with Fixed-Point Data Types” on page 24-33

* “Generating Structured Text for Stateflow® Chart with Absolute Time Temporal Logic”
on page 24-35

* “Integrating User Defined Function Blocks, Data Types, and Global Variables into Generated
Structured Text” on page 24-37

* “Simulating and Generating Structured Text Code for Rockwell Motion Instructions”
on page 24-39

* “Tank Control Simulation and Code Generation by Using Ladder Logic” on page 24-41
* “Using Timers in Ladder Logic” on page 24-44

* “Temperature Control Simulation and Code Generation Using Ladder Logic” on page 24-47
» “Elevator Control Simulation and Code Generation Using Ladder Logic” on page 24-51
* “Structured Text Code Generation for Simulink Data Dictionary” on page 24-54

* “Structured Text Code Generation for Subsystem Reference Blocks” on page 24-55

+ “PLC RemoveSSStep for Distributed Code Generation” on page 24-57

* “Structured Text Code Generation for Enum To Integer Conversion” on page 24-60

» “Structured Text Code Generation for Integer To Enum Conversion” on page 24-61

* “PLC PreventExternalVarlnitialization for Distributed Code Generation” on page 24-62
* “Simulation and Structured Text Generation For MPC Controller Block” on page 24-64

24 Examples Book

Generate Structured Text Code for a Simple Simulink®
Subsystem

This example shows how to select the target IDE for a Simulink® model, generate code, and view

generated files.
1. Open model plcdemo simple subsystem and save a copy to a writable location.

J

Yy

(\J i
[+ o1 o]

SimpleSubsystemn

This example shows how to generate code for a simple subsystem block.
To generate structured text code for the subsystem, select the SimpleSubsystem block and right-click PLC

Code > Generate Code for Subsystem.

Copyright 2000-201% The MathWarks, Inc.

2. Open the Simulink PLC Coder app.
3. Open the PLC Code Generation dialog box.. In the Target IDE select 3S CoDeSys 2.3.

24-2

Generate Structured Text Code for a Simple Simulink® Subsystem

& Configuration Parameters: plcderno_simple_subsystern/Configuration (Active) — O *
Solver General options

Data Import/Export

Math and Data Types
» Diagnostics Show full target list

Hardware Implamentation

Target IDE: 35 CoDeSys 2.3 -

Target IDE Path: C:\Program Files (x86)\35 Software
Model Referencing . .
Simulation Target Code Output Directory: |./plcsrc
Coverage [| Generate testbench for subsystem

» HDL Code Generation

» Design Verifier

¥ PLC Code Generation
Comments
Optimization
Identifiers
Report

Include testbench diagnostic code

OK Cancel Help Apply

Click OK

4. Select the SimpleSubsystem block and click Generate PLC Code. Alternatively, from the
command line, enter:

generatedfiles = plcgeneratecode('plcdemo simple subsystem/SimpleSubsystem');

24-3

24 Examples Book

SIMULATION

@ Code for

DEBUG MODELING FORMAT APPS lefesly BN SUBSYSTEM BLOCK S 9 c @

+h

avigate to Code

Settings SimpleSubsystem <= Generate Open Report ~
- PLC Code
PREPARE GENERATE CODE REVIEW RESULTS ry
plcdemo_simple_subsystem
® plcderno_simple_subs',rstern » hd
@
] > [:]I
=
/\J e M @
O
Simple Subsystam

This introductory model shows the code generated for a simple subsystem consisting of

a few basic Simulink blocks. To build the subsystem, right-click on the subsystem block and

select PLC Code > Generate Code for Subsystem.
- The Diagnostic Viewer displays hyperlinks to the generated code files, click the links to view the generated files.
lE_EI Copyright 2009-201% The MathWorks, Inc.

»

Ready 100% FixedStepDiscrete

5. View the code generation report.

The report includes links to the generated code file plcdemo simple subsystem.exp and

associated traceability and code metrics reports.

24-4

Generate Structured Text Code for a Simple Simulink® Subsystem

Code Generation Report _ O e
& Find: |4+ & Match Case
Traceability Report Traceability Report for

Code Metrics Report
Table of Contents

Generated Files
1. Eliminated / Virtual Blocks

pledemo_simple_subsystem.exp 2. Traceable Simulink Blocks / Stateflow Objects / MATLAB Functions
o pledemo_simple_subsystem/SimpleSubsystem

Eliminated / Virtual Blocks

Block Name Comment
<51>/U Inport
<51>/¥ Qutport

Traceable Simulink Blocks / Stateflow Objects / MATLAB Functions

Subsystem: pledemo_simple_subsystem/SimpleSubsystem

Object Name Code Location

<51>/Gain pledemo_simple_subsystem.exp:41
<51>/Sum pledemo_simple_subsystem.exp:42
<81>/Unit Delay pledemo_simple_subsystem.exp:36, 43, 45

6. This figure contains the generatecode plcdemo _simple subsystem.exp.

24-5

24

Examples Book

File: pledemo_simple_subsystem.exp

1 (*
2 ®

3 * File: plcdemo_simple_subsystem. exp

4 *

5 * IEC 61131-3 Structured Text (ST) code generated for subsystem “plcdemo_simple_subsystem/SimpleSubsystem”
6 =

7 % Model name : pledemo_simple_subsystem

8 * version : 1.62

9 * creator The Mathiorks, Inc.

16 * Last modified by The Mathiorks, Inc.

11 * Last modified on Thu Dec 12 12:37:48 2012

12 * todel sample time 0.1s

13 * Subsystem name plcdemo_simple subsystem/SimpleSubsystem
14 * Subsystem sample time 8.1s

15 * Simulink PLC Coder version 3.2 (R2820b) 27-Feb-2820

16 * ST code generated on Thu Mar 12 13:39:57 2028

17 *

18 * Target IDE selection : 35 CoDeSys 2.3

13 * Test Bench included : No

28 *

21 *)

22 FUNCTION_BLOCK SimpleSubsystem
23 VAR_INPUT

24 ssMethodType: SINT;

25 U: LREAL;

25 END_VAR

27 VAR_OUTPUT

28 ¥: LREAL;

23 END_VAR

38 VAR

31 UnitDelay DSTATE: LREAL;

32 END_VAR
33 CASE ssMethodType OF

34 55 INITIALIZE:

35 (* SystemInitialize for Atomic SubSystem: '<Root>/SimpleSubsystem' *)
36 (* InitializeConditions for UnitDelay: '<S1>/Unit Delay® *)

37 UnitDelay_DSTATE 8;

38 (* End of SystemInitialize for SubSystem: '<Roots/SimpleSubsystem' *)
39 55_STEP:

40 (* Outputs for Atomic SubSystem: '<Root>/SimpleSubsystem' *)

41 (* Gain: °"<SI>/Gain’ incorporates:

42 * Sum: ‘<51>/Sum’

43 * UnitDelay: '<51>/Unit Delay’ ¥)

44 Y := (U - UnitDelay_DSTATE) * @.5;

45 (* Update for UnitDelay: '<S1>/Unit Delay’ *)

45 UnitDelay DSTATE := Y;

47 (* End of Outputs for SubSystem: '<Root»>/SimpleSubsystem’ ¥)

48 END_CASE;
45 END_FUNCTION_BLOCK
58 VAR_GLOBAL CONSTANT

51 SS_INITIALIZE: SINT
52 55_STEP: SINT := 1;
53 END_VAR

54

Related Topics

* “Generate and Examine Structured Text Code” on page 1-9

24-6

Generating Structured Text for a Simple Simulink® Subsystem without Internal State

Generating Structured Text for a Simple Simulink® Subsystem
without Internal State

This model shows the code generated for a simple subsystem without internal state.

Yy

J

SimpleSubsystemn

This introductory model shows the code generated for a simple subsystem without
internal state. To build the subsystem, right-click on the subsystem block and
select PLC Code > Generate Code for Subsystem

The Diagnostic Viewer displays hyperlinks to the generated code files, click the links to view the generated files.

Copyright 2008-2019 The MathWaorks, Inc.

This model shows how a subsystem without internal state maps to Structured Text.

1 sos >
@ p> >

u ¥
You can generate PLC Structured Text code for this subsystem by right-clicking on the subsystem
block and select PLC Code -> Generate Code for Subsystem

Alternatively, you can use the following command generatedFiles =
plcgeneratecode('plcdemo_simple subsystem nostate/SimpleSubsystem');

After the code generation, the Diagnostic Viewer window is displayed with hyperlinks to the
generated code files. You can open the generated files by clicking on the links.

24-7

24 Examples Book

Generating Structured Text for a Hierarchical Simulink®
Subsystem with Virtual Subsystems

This introductory model shows the code generated for a hierarchical subsystem consisting of other
Simulink subsystems.

O
1 L
>
il !
A ’:
2 2)
1 e

Hierarchical Subsystem

This introductory model shows the code generated for a hierarchical subsystem consisting of

two other subsystems named "S1" and "S2". These subsystems are not marked atomic and

hence they do not generate separate Function Blocks. The code for these subsystems gets inlined into
the Function Block for the parent subsystem "HierarchicalSubsystem”.

To build the subsystem, right-click on the subsystem block and
select PLC Code > Generate Code for Subsystem.

The Diagnostic Viewer displays hyperlinks to the generated code files, click the links to view the generated files.

Copyright 2008-201% The MathWorks, Inc.

This model contains a hierarchical subsystem containing other virtual subsystems.

24-8

Generating Structured Text for a Hierarchical Simulink® Subsystem with Virtual Subsystems

COr—>
»u ¥ I
G r—>
&1
= I+
(L) Y 2)
: J
- 52

You can generate PLC Structured Text code for this subsystem by right-clicking on the subsystem
block and select PLC Code -> Generate Code for Subsystem Alternatively, you can use the following
command generatedFiles = plcgeneratecode('plcdemo_hierarchical virtual subsystem/
HierarchicalSubsystem');

After the code generation, the Diagnostic Viewer window is displayed with hyperlinks to the
generated code files. You can open the generated files by clicking on the links.

24-9

24 Examples Book

Generating Structured Text for a Hierarchical Simulink®
Subsystem

This introductory model shows the code generated for a hierarchical subsystem consisting of other
Simulink subsystems.

O

1 L
>

il !

A ’:
2 2)

1 e

Hierarchical Subsystem

This introductory model shows the code generated for a hierarchical subsystem consisting of

two other subsystems named "S1" and "S2". Each of these subsystems generate a separate Function Block.
To build the subsystem, right-click on the subsystem block and

select PLC Code > Generate Code for Subsystem.

The Diagnostic Viewer displays hyperlinks to the generated code files, click the links to view the generated files.
Copyright 2008-201% The MathWaorks, Inc.

This model contains a hierarchical subsystem containing other subsystems.

24-10

Generating Structured Text for a Hierarchical Simulink® Subsystem

COr—>
MU ¥ I
-—r-.z +
&1
= I+
e L Y 2)
: J
- 52

You can generate PLC Structured Text code for this subsystem by right-clicking on the subsystem
block and select PLC Code -> Generate Code for Subsystem Alternatively, you can use the following
command generatedFiles = plcgeneratecode('plcdemo_hierarchical subsystem/
HierarchicalSubsystem');

After the code generation, the Diagnostic Viewer window is displayed with hyperlinks to the
generated code files. You can open the generated files by clicking on the links.

24-11

24 Examples Book

Generating Structured Text for a Reusable Simulink®

Subsystem
This model shows the code generated for a reusable subsystem consisting of a few basic Simulink
blocks.
>

J

r\j o LIZ Y2

ReuszableSubsystem

function block due to code reuse optimization.
To build the subsystem, right-click on the subsystem block and
select PLC Code > Generate Code for Subsystem.

This introductory model shows the code generated for a hierarchical subsystem consisting of
two identical subsystems named "51" and "S2". These two subsystems result in a single shared

The Diagnostic Viewer displays hyperlinks to the generated code files, click the links to view the generated files.

Copyright 2008-2019 The MathWaorks, Inc.

This model contains a subsystem with two copies of an identical subsystem.

24-12

Generating Structured Text for a Reusable Simulink® Subsystem

L1 3} L Y 1)
U1 1
51
L2 3 L Y ,.'-:-{ a ;|
Uz Y2
52

You can generate PLC Structured Text code for this subsystem by right-clicking on the subsystem
block and select PLC Code -> Generate Code for Subsystem

Alternatively, you can use the following command generatedFiles =
plcgeneratecode('plcdemo reusable subsystem/ReusableSubsystem');

After the code generation, the Diagnostic Viewer window is displayed with hyperlinks to the
generated code files. You can open the generated files by clicking on the links.

24-13

24 Examples Book

Generating Structured Text for a Simple Simulink® Subsystem
Using Multirate

This model shows the code generated for a simple subsystem using multirate.

g
¥1 »(1)
'ﬁl\,l » U1
—
¥2 > - —(2)
'ﬁl\,l puz
¥3 »(3)
|-
SimpleSubsystem ::_: C]

This example model shows a simple subsystem with two sample rates: the sample time of input signal
U1 is set to 0.1s and the sample time of U2 is set to 0.2s. Output Y1 and Y2 are calculated based on
U1 and U2 separately and output Y3 is calculated based on both U1 and U2.In the generated code,
the slower rate (0.2s) is predicated by checking the corresponding rate counter. PLC Coder generates
rate scheduling and management code along with code for model operations.

To build the subsystem, right-click on the subsystem block and
select PLC Code > Generate Code for Subsystem.

The Diagnostic Viewer displays hyperlinks to the generated code files, click the links to view the generated files.

Copyright 2012-2019 The MathWaorks, Inc.

This model shows how a subsystem using multirate maps to Structured Text.

24-14

Generating Structured Text for a Simple Simulink® Subsystem Using Multirate

Y1

|

— (2

Y

?
;
|

Uz

+ ¥3

You can generate PLC Structured Text code for this subsystem by right-clicking on the subsystem
block and select PLC Code -> Generate Code for Subsystem

Alternatively, you can use the following command generatedFiles =
plcgeneratecode('plcdemo multirate/SimpleSubsystem');

After the code generation, the Diagnostic Viewer window is displayed with hyperlinks to the
generated code files. You can open the generated files by clicking on the links.

24-15

24 Examples Book

Simulate and Generate Structured Text Code for a Stateflow®
Chart

This example shows how to simulate and generate code for the ControlModule stateflow chart from
the plcdemo stateflow controller model.

Open the Model

open_system('plcdemo stateflow controller')

i ™
T i md | crnd out] I:l
— @)
TestHamess t
P diriveln O dirveOut
L A
ControlModule
BehaviorModal
mmrr.a";!\'...
drive| state | D-}

- M [bana t[:] simple_fault

unwecoverabls_fault b
j Q
A A
@
X o

o]

This example shows the use of a Stateflow chart to implement the control logic for a drive.

The TestHarmess chart provides a test scenario of starting, holding, and resetting the drive.

The BehaviorMode chart provides a simple chart to test the ControlModule chart behavior by injecting faults.
The ControlModule chart performs the drive control logic.

To generate code for the subsystem, select the ControlModule chart and right-click PLC Code > Generate
Code for Subsystem.

Copyright 2009-201% The MathWorks, Inc.

To start the simulation, click Run.
Generate Code

To generate code for the ControlModule chart, use plcgeneratecode. For more information, see
plcgeneratecode:

24-16

Simulate and Generate Structured Text Code for a Stateflow® Chart

generatedfiles = plcgeneratecode('plcdemo stateflow controller/ControlModule');

The plcdemo stateflow controller consists of stateflow charts to simulate a drive module. The
TestHarness chart provides a test scenatio of starting, holding, and resetting the drive.

open_system('plcdemo stateflow controller/TestHarness');

50

o

entry: cmd = cRESET,;

The BehaviorModel chart provides a simple chart to test the ControlModule chart behavior by
injecting faults.

open_system('plcdemo stateflow controller/BehaviorModel');

[is_start()]) -
[unrecoverable_faull] flUnrecoverableFault

entry: set_fault();

Inactive

® o entry: set_inactiye();

lis_stop()]

[simple_fault]
[is_reset()]

v function result=is_reset function set_active
Fault
entry: set_fault();
function result=is_start function set_inactive
function result = is_stop function set_fault

24-17

24 Examples Book

The ControlModule chart performs the drive control logic.

open_system('plcdemo stateflow controller/ControlModule');

?

=)

ain

Idle
entry: out = sID Em
start_drive();

d==cSTART

start_drive();

[cmd==cHOLD]
[lis_fault()] ‘Restarting

entry: out=sRESTARTING;
2 start_drive(),

.

Held
entry: out=sHEL|D;
start_drive();

[cmd==cRESTART]

- | A
Resetting I
entry: out=sRESE EIG: after(20,tick)]
reset_drive(); [cmd==cSTOP || iz_fault{)] [emd==cSTOP]
[/}
Complete Stopping Aborti
cmd==cRESET . orting
l.:’\.' - [] Eﬂtﬁf. DI:Jt—SGDM LETE Entry: DUT.:SETD - ING
'l start_drive(); stop_drive();
T [liz_active()]
Stopped Aborted
entry: out=sSTQPPED; entry: out=sABJRTED:
stop_drive(); stop_drivel();
[emd==cRESET] [cmd==cRESET]
O O O
function function function start_drive function stop_drive function reset_drive
result = is_fault result = is_active

24-18

Generating Structured Text for a MATLAB® Block

Gene

rating Structured Text for a MATLAB® Block

This model shows the code generated for a MATLAB block implementing tank valve control logic.

[Group 1

@ Signal 3

InFlow, InFlow.

—> convert Command

Tank Height

OutFlow OutFlaw

TankCantral

Tank Dynamics

StiSpesd N

e D

Height

This model shows the use of a MATLAB block to implement the valve open/close logic
for a tank. When you start simulation, the Tank Cenfrol GUI appears that lets you modify various parameters
such as Tank Area and observe the effects.

The subsystem "Tank Dynamics" consists of the plant model for the tank and the MATLAB block
"TankContral" contains the control algorithm.

Right click on the "TankControl" block and select PLC Code > Generate Code for Subsystem.

The Diagnostic Viewer displays hyperlinks to the generated code files, click the links to view the generated files.

Copyright 2009-2018 The MathWarks, Inc

TankControl is a MATLAB block.

You can generate PLC Structured Text code for this block by right-clicking on the subsystem block
and select PLC Code -> Generate Code for Subsystem Alternatively, you can use the following
command generatedFiles = plcgeneratecode('plcdemo eml tankcontrol/TankControl');

After the code generation, the Diagnostic Viewer window is displayed with hyperlinks to the
generated code files. You can open the generated files by clicking on the links.

24-19

24 Examples Book

Generating Structured Text for a Feedforward PID Controller

This model shows the code generated for a Feedforward PID Controller implemented using Simulink
library blocks.

mdl = 'plcdemo pid feedforward';
open_system(mdl);

Anti-Windup PID Control Demonstration
with Feedforward Control

g B[N
—
Ind double|
2 1 > _/_ =
double SAT{u) I j"'ll NGD)
e i Plant Actuatar o Tos+1 0 fin2 i
pid_feedfonward Dead Time ¥
—
In3 E First Crder Process.
Controller Plant

This model shows the code generated for a PID Feedforward Controller subsystem.
Open up the "pid_feedforward” subsystem to examine the use of PID block for implementing
a feed-forward controller.

To build code for the subsystem, right-click on the subsystem block and
select PLC Code > Generate Code for Subsystem.

The Diac_;nnstic Viewer displays hyperlinks to the generated code files, click the links to view the generated files.

Copyright 2009-2019 The MathWorks, Inc.

This model contains the following subsystem which implements the Feedforward controller.
open_system('plcdemo pid feedforward/pid feedforward');

rh““\
L

Feedforward
douple e(t)
1 —
Q—’ Po@E (T ()
ou

TR
double
4

You can generate PLC Structured Text code for this subsystem by right-clicking on the subsystem
block and select PLC Code -> Generate Code for Subsystem Alternatively, you can use the following
command

24-20

Generating Structured Text for a Feedforward PID Controller

generatedFiles = plcgeneratecode('plcdemo pid feedforward/pid feedforward');

Generating PLC code for 'plcdemo pid feedforward/pid feedforward'.
Using <a href="matlab:configset.showParameterGroup('plcdemo pid feedforward', { 'PLC Code Gel
Gathering test vectors for PLC testbench.

Begin code generation for IDE <a href="matlab:configset.showParameterGroup('plcdemo pid feed
Emit PLC code to file.

Creating PLC code generation report <a href="matlab:web('C:\TEMP\Bdoc20b 1465442 5924\ib8F42
PLC code generation successful for 'plcdemo pid feedforward/pid feedforward'.
Generated files:

.\plcsrc\plcdemo pid feedforward.¢

After the code generation, the Diagnostic Viewer window is displayed with hyperlinks to the
generated code files. You can open the generated files by clicking on the links.

24-21

24 Examples Book

Mapping Tunable Parameters to Structured Text

24-22

This model shows how to map tunable parameters from the Simulink® model to the generated
Structured Text code.

G Q—WFP—*
U b4

Q_’%'—F
[Rh 1

>

Y2

\/

This model shows the different implementations of tunable parameters in the generated code. It

makes use of three parameters K1, K2, and K3 defined in the MATLAB base workspace. To build the
subsystem, right-click on the subsystem block and select PLC Code Generation > Generate Code for
Subsystem. The Diagnostic Viewer with hyperlinks to the generated code is displayed automatically.

In this model:

* K1 is set to "Auto" storage class
* K2 is set to "ExportedGlobal" storage class
+ K3 is set to "ExportedGlobal" constant storage class

In the generated Structured Text code for compatible IDE targets:

* K1 is mapped to a Function Block local variable
* K2 is mapped to a global variable
* K3 is mapped to a global constant

For the RSLogix 5000 Add On Instruction (AOI) format:

Mapping Tunable Parameters to Structured Text

* K1 is mapped to an AOI local tag
* K2 and K3 are mapped to AOI input tags

For the RSLogix 5000 Routine format:

* K1 is mapped to routine instance tag
* K2 and K3 are mapped to global program tags

See the Simulink PLC Coder documentation on tunable parameter code generation for more
information.

You can generate PLC Structured Text code for this subsystem by right-clicking on the subsystem
block and select PLC Code -> Generate Code for Subsystem Alternatively, you can use the following
command generatedFiles = plcgeneratecode('plcdemo tunable params/SimpleSubsystem');

After the code generation, the Diagnostic Viewer window is displayed with hyperlinks to the
generated code files. You can open the generated files by clicking on the links.

24-23

24 Examples Book

Mapping Tunable Parameters Defined Using
Simulink.Parameter Objects to Structured Text

This model shows how tunable parameters map to Structured Text by specifying them as
Simulink.Parameter objects in MATLAB base workspace.

24-24

Mapping Tunable Parameters Defined Using Simulink.Parameter Objects to Structured Text

¥

]

double >
4
= L1 i !]
(\j doubis 2
' L Y2 > 3
oo €D
SimpleSubsystam

This model shows the usage of tunable parameters by specifying them as Simulink.Parameter objects

in MATLAB base workspace.This model makes use of three parameters K1, K2 and K3 defined in the
MATLAB base workspace as Simulink.Parameter objects (please see 'setup_tunable_params.m’in

the same directory as this model). To build the subsystem, right-click on the subsystem

block and select PLC Code > Generate Code for Subsystem. The Diagnostic Viewer displays hyperlinks to
the generated code files, click the links to view the generated files.

In this model:

* K1 has 'Model default’ storage class

* K2 has 'ExportedGlobal’ storage class

* K3 has 'Custom’ storage class and 'Const' custom storage class

In the generated Structured Text code for compatible IDE targets:
* K1 is mapped to a Function Block local variable

* K2 is mapped to a global variable

* K3 is mapped to a global constant

For the Step? and TIA Portal targets:
* K1 is mapped to a Function Block local variable
* K2 and K3 are mapped to fields of DATA BLOCK PLCGlobalVar

For the Studio 5000 and RSLogix 5000 Add On Instruction (AQI) format:

* K1 is mapped to an AQIl local tag

* K2 and K3 are mapped to fields in an AOI InOut tag, top_subsystem_name_Gvar, of struct type
top_subsystem name_GVarUDT. At initialization, the top subsystem AQI calls the PLC_INIT_PARAMETERS
AOI to initialize the tag with values of K2 and K3. Besides the generated code L5X file, a separate L5X file
has definition of the tag. You can import the tag through this file.

For the Studio 5000 and RSLogix 5000 Routine format:
* K1 is mapped to routine instance tag
* K2 and K3 are mapped to global program tags

See the Simulink PLC Coeder documentation on tunable parameter code
eneration for more information.

Copyright 2009-201% The MathWorks, Inc.

24-25

24 Examples Book

24-26

This model uses three parameters K1, K2 and K3 defined in the MATLAB base workspace as
Simulink.Parameter object. These parameters are used in the Gain blocks:

- Ll o K1:

u ¥

m Le] i 2 KE‘:

1 Y1

Y2

In this model:

* K1 has 'SimulinkGlobal' storage class
* K2 has 'ExportedGlobal' storage class
* K3 has 'ExportedGlobal' storage class and 'Const' custom storage class

The parameters and their storage classes have been defined using the following MATLAB script
(setup tunable params.m) which is run at model load time:

% define tunable parameters in base workspace as Simulink.Parameter objects

% tunable parameter mapped to local variable
K1 = Simulink.Parameter;

K1.Value = 0.1;

K1.StorageClass = 'SimulinkGlobal';

% tunable parameter mapped to global variable
K2 = Simulink.Parameter;

K2.Value = 0.2;

K2.StorageClass = 'ExportedGlobal';
K2.CoderInfo.CustomStorageClass = 'Default’;

% tunable parameter mapped to global constant
K3 = Simulink.Parameter;

Mapping Tunable Parameters Defined Using Simulink.Parameter Objects to Structured Text

K3.Value = 0.3;
K3.StorageClass = 'ExportedGlobal';
K3.CoderInfo.CustomStorageClass = 'Const’;

Now you can generate PLC Structured Text code for this subsystem by right-clicking on the
subsystem block and select PLC Code -> Generate Code for Subsystem

Alternatively, you can use the following command generatedFiles =
plcgeneratecode('plcdemo_tunable params _slparamobj/SimpleSubsystem');

After the code generation, the Diagnostic Viewer window is displayed with hyperlinks to the
generated code files. You can open the generated files by clicking on the links.

In the generated Structured Text code for compatible IDE targets:

* K1 is mapped to a Function Block local variable
+ K2 is mapped to a global variable
+ K3 is mapped to a global constant

For the RSLogix 5000 Add On Instruction (AOI) format:

* K1 is mapped to an AOI local tag
* K2 and K3 are mapped to AOI input tags

For the RSLogix 5000 Routine format:

* K1 is mapped to routine instance tag
* K2 and K3 are mapped to global program tags

See the Simulink PLC Coder documentation on tunable parameter code generation for more
information.

24-27

24 Examples Book

Simulate and Generate Code for Speed Cruise Control System

This example shows how to simulate and generate code for the Controller subsystem from a speed
cruise control model by using Simulink® and Stateflow®.

Open the Model

open_system('plcdemo cruise control')

Speed Cruise Control System Using Simulink and Stateflow

L

Req. 4 (press inc)

(input and expected output)

24-28

Increment ¥ Increment
Decrement ¥ Decrement
Target Speed
Set | Set
Resume #| Resuma
Power # Power
Brake ¥ brake ratio N
Throt_cmd [%) | Throttle (%) Load (%) — v
SpeadUp ™ accl
>
Signal Builder — curr_speed N \ }

Controller

#| Brake ratic Spead d

Actual and Expected
Plant Speed Target

This model shows the code generation for the Speed Cruise Control
Controller subsystem. Open the Controller subsystem. This model uses a
Triggered Stateflow Chart for the Enable and Setpoint calculations. It uses a
discrete PID Controller to compute the Throttle Command. Click the scopes
to observe the Target and Actual speeds.

Copyright 2002-2013 The Math\Waorks, Inc.

To start the simulation, click Run.
Generate Code
To generate code for the Controller subsystem, use plcgeneratecode:

generatedfiles = plcgeneratecode('plcdemo cruise control/Controller');

Simulate and Generate Code for Speed Cruise Control System

The Controller subsystem performs the Enable and Setpoint calculations by using a Triggered
Stateflow® chart. The Throttle Command is computed by using a discrete PID controller.

24-29

24 Examples Book

Variable Step Speed Cruise Control System

This example shows how to simulate and generate code for the Controller subsystem from a speed
cruise control model by using variable continuous step solver.

Open the Model

open_system('plcdemo cruise control continuous');

Speed Cruise Control System Using Variable-Step Continuous Solver

Req. 4

(input and expected output)

24-30

{press inc)
Increment ¥ Increment
Decrement ¥ Decrement
Target Speed
Set | Set
Resume #| Resuma
Power # Power
Brake ¥ brake ratio N
Throt_cmd [%) | Throttle (%) Load (%) — v
SpeadUp ™ accl
>
Signal Builder — curr_speed \ }

Py
P

Controller

#| Brake ratic Spead d

Actual and Expected
Plant Speed Target

Nk

This model shows PLC code generation using variable-step continuous solver for a
Speed Cruise Control controller subsystem. PLC Coder supports code generation of model
controller subsystem block with fixed sample time. To satisfy this requirement, user can

1. Choose fixed-step solver so the controller subsystem block runs at fixed sample time as
demonstrated in the plcdemo_cruise_control demo;

2. Choose variable-step continuous solver and set explicit sample time for the controller block
as demonstrated in this demo.

In this model, the model solver is set to variable-step continuous (ode45); the sample time of

the controller subsystem is set to 0.1. To set the controller sample time, right click on

the controller block and select Subsystem Parameters, on the Main tab, set the Sample time
parameter. This method allows combined modeling of discrete-time controller and continuous-time
plant in the same model with PLC code generation support.

To build code for the subsystem, right-click on the "Controller" subsystem block and
select PLC Code > Generate Code for Subsystem.

The Diagnostic Viewer displays hyperlinks to the generated code files, click the links to view the generated files.

Copyright 2002-2019 The Math\Warks, Inc.

To start the simulation, click Run

Variable Step Speed Cruise Control System

Generate Code

To generate code for the Controller subsystem, use plcgeneratecode:

generatedfiles =
plcgeneratecode('plcdemo cruise control continuous/Controller');

In this model, the model solver is set to variable-step continuous (ode45); the sample time of the
controller subsystem is set to 0.05. To set the controller sample time, right click on the controller
block and select Subsystem Parameters, on the Main tab, set the Sample time parameter. This
method allows combined modeling of discrete-time controller and continuous-time plant in the same
model with PLC code generation support.

24-31

24 Examples Book

Simulate and Generate Code for Airport Conveyor Belt Control
System

This example shows how to simulate and generate code for the Controller subsystem from an airport
conveyor belt model.

Open the Model

open_system('plcdemo_airport conveyor')

Airport Conveyor Belt Control System

L_MC] [F_MC] [T_MC]
[M1]
riggerGeneratar L OnBefPosiion
BeliLeft
Pesiion

Position
Controller
—»{in 1 Creating Trigger LuggageOnBelt LuggageOnBelt |
NumberOfElementsOnBel: |

Gmup 1 EmergencyHalt —b EmergencyHalt Luggage TakeOff
@ OnBa | NumBrOfEkmantsOn3si [Motor
Motor_MC |—+ » Motor_MC B@?—’
Start —DW—D Start - - Light AF1_Exit
[booteen | L ‘iwsamerwo| A
i

i i ILF1] [P_F1] Main
. rrierMCA Circular_Main_Conveyer % |\"J Cameper
LupgapeCnBek -@
L Paosition J Posiben »
DEEE (P LuggageOnBelt LuggegeOrBal
NumberOfElementsOnBalt
» NumberOfElementsOnBelt o >
LightBarrier_F1_Exit P—bm
ANB - Creating Trigger LigBBmSF F1_Entry |
NoMoral ugguage [LohtBarrier F1_Entryf L
Feeder_Conveyer ¢—»[LE_Ex]] Feederl
MewLugguage »<_[LB_En|
NOT
RandomTrigger
)\
[F_WiCL>
FTLAB Fd
Simulation Speed D
To vary the animation speed, double click Simulation Speed and use
the slider to vary the speed of the animation. —
Alower Simulation Speed setting means a faster animation, LFI> ’
while a higher Simulation Speed setting means a slower animation.
Animation

This model shows the code generation for the Airport Conveyor Belt System Centroller subsystem.
Open the Controller Subsystem. This model uses a Stateflow chart to implement the control logic for starting

and stopping the conveyor belt motor based on sensor inputs.
To generate structured text code for the subsystem, select the Controller subsystem block and right-click PLC Code > Generate Code for Subsystem

Capyright 2010-2019 The MathWarks, Inc.

To start the simulation, click Run. Observe the conveyor belt animation.
Generate Code
To generate code for the Controller subsystem, use plcgeneratecode:

generatedfiles = plcgeneratecode('plcdemo_airport conveyor/Controller')

24-32

Generating Structured Text for Simulink® Model with Fixed-Point Data Types

Generating Structured Text for Simulink® Model with Fixed-
Point Data Types

M diouble
—

+H +H+ [double

"

+H +H+ [double

"

IO RS
W=

¥

¥

sfi16_En13

convert L

_|sfw16_Eni12

sfiml_Erd

conven »

[orven | g |_> JEx6_Enta
sf16_End

convert

Copyright 2011-2019 The Math\Works, Inc.

To build code for the subsystem, right-click on the "Subsystem” subsystem block and
select PLC Code > Generate Code for Subsystem.

This model shows the code generated for a subsystem including fixed-point data type.
Open the subsystem at the top level named 'Subsystem'. Simulate the model and observe
the fixed point types displayed on the signals.

The Diagnostic Viewer displays hyperlinks to the generated code files, click the links to view the generated files.

Open the subsystem at the top level named 'Subsystem'. Simulate the model and observe the fixed
point types displayed on the signals.

24-33

24 Examples Book

24-34

5F116_En13
- 5fi16_Eni13 sfix16_En13d | 5fi16_En13
_ _Enl= 1 _
u sfixB_Erd x gl ! i "'
50
ni16
D, g int16 nt16 sfx16_En13
sfim16_End | sf‘ﬂﬁ_EnE
D : 51

You can generate PLC Structured Text code for this subsystem by right-clicking on the subsystem
block and select PLC Code -> Generate Code for Subsystem Alternatively, you can use the following
command generatedFiles = plcgeneratecode('plcdemo fixed point/Subsystem');

After the code generation, the Diagnostic Viewer window is displayed with hyperlinks to the
generated code files. You can open the generated files by clicking on the links. You will notice that all
the fixed-point input/outputs in the model as well as internal state variables have been lowered to
integer data types.

Generating Structured Text for Stateflow® Chart with Absolute Time Temporal Logic

Generating Structured Text for Stateflow® Chart with Absolute
Time Temporal Logic

This model shows the code generated for a Stateflow chart which uses absolute time temporal logic.
Simulate the model. Click on the scope to observe the "pulse" output.

Generating Structured Text for Stateflow Chart with Absolute Time Temporal Logic

Temporal
]

¥

This model shows the code generated for a Stateflow chart with absolute time temporal logic.
Open up the "Temporal” chart. Notice that this chart uses absolute time temporal logic operators
like 'after' and 'before’. Click on the scope to observe the 'pulse’ output.

To build code for the chart, right-click on the "Temporal” chart and
select PLC Code > Generate Code for Subsystem.

The Diagnostic Viewer displays hyperlinks to the generated code files, click the links to view the generated files.

Copyright 2002-2020 The MathWaorks, Inc.

Open up the "Temporal" Stateflow chart. Notice that this chart uses absolute time temporal logic
operators like 'after' and 'before'. These operators are mapped to Structured Text timer operations in
the generated code.

24-35

24 Examples Book

{pulse = 0;}
L)
A 1 B
- =1- after(3, sec)]
du: pulse = 1; [’ ——= du: pulse = 2;
[after(4, sec]]
5 C
du: pulse = 4: [before(2, sec) && (In1 == 1)] |du: pulse = 3;

L

You can generate PLC Structured Text code for this chart by right-clicking on the chart and select
PLC Code -> Generate Code for Subsystem

Alternatively, you can use the following command generatedFiles =
plcgeneratecode('plcdemo sf abs time/Temporal');

After the code generation, the Diagnostic Viewer window is displayed with hyperlinks to the
generated code files. You can open the generated files by clicking on the links.

24-36

Integrating User Defined Function Blocks, Data Types, and Global Variables into Generated Structured Text

Integrating User Defined Function Blocks, Data Types, and
Global Variables into Generated Structured Text

This model shows how to integrate user defined function blocks, data types and global variables into
generated structured text

>
@ In2 g ¥l
u2

This model shows how to integrate user defined function blocks, data types
and global variables into generated structured text.

Right click on the top level subsystem "Subsystem’ and select "PLC Code > Options ..." to
bring up the 'Configuration Parameters’ dialog box. In the dialog box, select 'Symbols' pane under
'PLC Code Generation”. You will see the following symbols in the 'Externally Defined Symbols' field:

ExternallyDefinedBlock InBus K1

Specifying these symbols here would respectively omit the function block, bus data type and
global variable with the same names in the generated structured text.

To build the subsystem, right-click on the subsystem block and
select PLC Code = Generate Code for Subsystem.

The Diagnostic Viewer displays hyperlinks to the generated code files, click the links to view the generated files.
In the generated code, you will notice that there are calls to function block 'ExternallyDefinedBlock', however the
definition of the function block has been omitted. Similarly, the definition of bus type ‘InBus1' and

global variable "K1" have alzo been omitted.

Copyright 2000-201% The MathWarks, Inc.

Open the top level subsystem 'Subsystem' by double clicking on it. You will notice it has a bunch of
blocks including the block 'ExternallyDefinedBlock'. The user would like to replace this with an
externally defined block in the PLC IDE in the generated code. In this model 'ExternallyDefinedBlock'
is a MATLAB® block. This could be any other Simulink® block or subsystem as well. The input port
'In1'is a bus input of 'InBus' data type. The user would like to provide the definition of 'InBus'
externally in the PLC IDE. Similarly, the user would like to provide the definition of the 'K1' global
tunable parameter of the Gain block externally.

24-37

24 Examples Book

24-38

4

fon

=
ka
; ¥
T
L L
=
-
L

LA
+

ExternallyDefinedBlock

To do this, right click on the top level subsystem 'Subsystem' and select 'PLC Code -> Options ...' to
bring up the 'Configuration Parameters' dialog box. In the dialog box, select 'Symbols' pane under
'PLC Code Generation'. You will see the following symbols in the 'Externally Defined Symbols' field:

ExternallyDefinedBlock InBus K1

Specifying these symbols here would respectively omit the function block, bus data type and global
variable with the same names in the generated structured text.

Now you can generate PLC Structured Text code for this subsystem by right-clicking on the
subsystem block and select PLC Code -> Generate Code for Subsystem Alternatively, you can use the
following command generatedFiles = plcgeneratecode('plcdemo external symbols/Subsystem');

After the code generation, the Diagnostic Viewer window is displayed with hyperlinks to the
generated code files. You can open the generated files by clicking on the links.

In the generated code, you will notice that there are calls to function block 'ExternallyDefinedBlock’,
however the definition of the function block has been omitted. Similarly, the definition of bus type
'InBus1' and global variable 'K1' have also been omitted.

Simulating and Generating Structured Text Code for Rockwell Motion Instructions

Simulating and Generating Structured Text Code for Rockwell
Motion Instructions

This model shows how to model Rockwell motion api calls in Stateflow. This representation can then
be further used for code generation using the "plcgeneratemotionapicode" function. For more
information on this workflow, refer to the "Simulation and Code Generation of Motion Instructions"
topic in the Simulink® PLC Coder™ documentation.

Create a Folder and Copy Relevant Files

The following code will create a folder in your current working folder. The new folder will contain
only the files that are relevant for this example. If you do not want to affect the current folder (or if
you cannot generate files in this folder), change your working folder.

plccoderdemo setup('plcdemo motion api rockwell');

Open up the "MotionController" subsystem. Open the Stateflow® chart named "Chart" chart inside it.
This chart implements the control logic for controlling the drives or the axes.

load_system('MotionControllerExample');
open_system('MotionControllerExample/MotionController/Chart');

Controller1 Link Drive1
0

Controller2 Link Drive2

function function [AxisTagOut,MITagOut] = MSO(AxisTag,MITag)
[AxisTagOut,MITagOut] = MSF(AxisTag,MITag)

function [AxisTagOut,MITagOut] = MAM(AxisTag,MITag,directionIn, positionin, speedin, speedUnitsln, ..
accelRateln, accelUnitsIn, decelRateln, decelUnitsIn, profileln, ...
accelJerkin, decelJerkin, jerkUnitsIn, mergeln, mergeSpeedin, ...
lockPositionln, lockDirectionln, eventDistanceln, calculatedDistanceln)

24-39

24 Examples Book

You can generate PLC Structured Text code for this subsystem by using the script file
"plcgeneratemotionapicode"”

plcgeneratemotionapicode('MotionControllerExample/MotionController"');

Created temporary model for codegeneration :MotionController@
PLC code generation successful for 'MotionController0/MotionController’.

Generated files:
plcsrc/MotionController0.L5X

Clean Up
Run the following commands to close the model, remove files, and return to the original folder.
>> close_system('MotionControllerExample');

>> cleanup

24-40

Tank Control Simulation and Code Generation by Using Ladder Logic

Tank Control Simulation and Code Generation by Using Ladder
Logic

This example shows how to simulate ladder logic and generate code from the ladder tank controller
model.

Import, Simulate,and Generate Code

1. Create a folder with write permission and copy the files
plcdemo ladder tankcontrol template.slx and TankControl.L5X into that folder.

2. Change the current folder to the newly created folder and rename
plcdemo ladder tankcontrol template.slxtoplcdemo ladder tankcontrol.slx.

3. In MATLAB, run the plcimportladder command. for more information, see plcimportladder
command:

plcimportladder('TankControl', 'TopAOI', 'TankControl');

4. Open the generated model TankControl runner TankControl.slx and select and copy the
TankControl runner block. Open plcdemo ladder tankcontrol, and replace Controller/
TankControl runner with the copied block.

5. To start the simulation, click Run. Open the Tank HMI block and use the Control Command rotary
switch to set controller command input.

Set the Control Command Input

* Set the Control Command switch to the 'Fill' position to fill the tank.

* Set the Control Command switch to the 'Hold' position to hold the current tank state.
* Set the Control Command switch to the 'Empty' position to empty the tank.

* Set the Control Command switch to the 'Stir' position to activate the tank stir state.

The tank enters the Stir state only when the fluid level is full. Otherwise the Stir command has no
effect. If the tank is in the Stir state, the Stir indicator lamp is on. Otherwise, it is off. The numeric
value of the tank command is:

 Fill--0

*+ Hold-1

* Empty - 2
e Stir--3

The tank animation UI shows the tank status as the simulation runs.

The completed simulink model should resemble

open_system('plcdemo ladder tankcontrol complete');

24-41

24 Examples Book

trol Gommand

ndicatar

Tank HMI

hJ

In Valve L
HMI -
Command

h

4

Out Valve

hJ

#| Tank Height

3

4

Stir Speed

hJ

Tank Height

Controller

Tank Height

This model is the completed model for the ladder tank controller example. The controller is auto-
generated from the ladder file TankControl.L5X by using the plcimportladder command.

To start the simulation, click Run. Use the Tank HMI Control Command rotary switch to set the
controller command input.

The Tank Model Ul displays the tank animation and status. The states of the ladder rungs and the
data values are displayed in the ladder block window.

Copyright 2018-2019 The MathWorks, Inc.

6. To generate code for the subsystem, use plcgeneratecode. for more information, see
plcgeneratecode:

generatedfiles = plcgeneratecode('plcdemo ladder tankcontrol/Controller')

7. To generate a testbench, open the ladder tank control testbench model:

open_system('plcdemo ladder tankcontrol tb');

24-42

Tank
Animation

Tank Control Simulation and Code Generation by Using Ladder Logic

(tank_run_cycle 1 |
% j tank_cmd {1
Tank
2 > Dynamics
Tank Height
Stir Speed »
Tank Haight
Controller Plant
Tank Haight

This model shows the ladder code generation from the ladder tank controller
example.

To generate ladder code, select the Controller/TankControl_runner block and right-
click PLC Coder > Generate Code for Subsystem.

To generate the testbench, in the PLC Configuration Parameters dialog box, select
the Generate testbench for subsystem option, and then generate code.

‘Copyright 2018-2019 The MathWarks, Inc.

24-43

24 Examples Book

Using Timers in Ladder Logic

This example shows how to model and simulate a motor controller in Simulink® by using Ladder
Logic. The example uses the ladder Timer instruction to implement the logic for delayed switching of
a motor. The timer T1 is used to control the starting delay and the timer T2 is used to control the
stopping delay.

Ladder Logic Diagrams using Timers

HMI

Maotor Controller

1 +——» convert P Start

Start

1
Start .
Motor p————— 1
i o

a p» convert &P Stop

Stop
Stop

Inputs and Outputs

The Motor Controller has two inputs, Start and Stop. Changing the Start input value to 1 will
start the motor after 5 seconds. Changing the Stop input value to 1 will stop the motor after 2
seconds. Stop input will override the Start input.

The output signal named Motor will be 1 when the motor is ON and 0 when the motor id OFF.
Motor Controller

The Motor Controller block is a PLC Controller block. It contains a Ladder Program block which
houses the ladder logic. Open the Motor Controller block and then open the Ladder Diagram
Program block to view the ladder logic for the controller.

24-44

Using Timers in Ladder Logic

Slop MolorSaar

MitorSiar TOWR:T1

11 Ton
BN f—
1 -

T4.0N TOF: T2
A=} TOF Rung 3

HICS QTEY Rung 4

This ladder logic has a TON timer named as T1 which is responsible for the delay during starting the
motor, and a TOF timer named as T2 which is responsible for the delay during the stopping of the
motor.

When the Start input is toggled to 1, the MotorStart output in the first rung gets activated which
starts the timer T1 counting operation. T1.DN bit is set when the T1 finishes counting. This causes
the third rung with timer T2 to become activated. Since T2 is a TOF timer, the T2.DN bit is set but,
timer starts counting operation only when this rung becomes false. Hence, both the inputs to the
lowermost rung are true and the Motor output gets activated.

24-45

24 Examples Book

When the Stop input is toggled to 1, the MotorStart coil gets deactivated and hence the T1.DN bit
is reset and the timer T2 starts counting. Once the T2 finishes counting operation, the T2.DN bit gets
reset and the Motor output gets deactivated.

Timer Configuration

The timer configurations are specified in the InitFcn callback inside the Model Properties. To
modify the start and stop delays, open the InitFcn callback from the Model Properties dialog
from Modeling > Model Settings > Model Properties.

T1 InitialValue.PRE specifies the Preset value of timer T1 and the T2 InitialValue.PRE
specifies the Preset value of timer T2. Both these values are specified as milliseconds.

Human Machine Interface (HMI)

Double click the HMI Subsystem if it is not already open to bring up the Human Machine Interface
(HMI) for this example. This HMI has the following sections:

* Inputs: The Start and Stop toggle switches are used to change the value of the respective
inputs. When the toggle switch is in On position the value of the corresponding input will be 1.

* Motor: This indicates the status of the motor. Green colored Motor ON indicator means that the
motor is running whereas grey colored indicator means that the motor is stopped.

* Graphs: This section of the HMI Subsystem displays the status of Start, Stop and Motor
against time as the simulation progresses.

24-46

Temperature Control Simulation and Code Generation Using Ladder Logic

Temperature Control Simulation and Code Generation Using
Ladder Logic
This example shows how to model a temperature controller in Simulink® by using ladder logic. The

example also showcases test case generation using Simulink Design Verifier™, C and ladder code
generation, and ladder testbench generation.

The plcdemo ladder househeat data.m file initializes data in the model workspace. To make changes,
you can edit the model workspace directly or edit the file and re-load the model workspace. To view
the model workspace, select MODELING > Model Explorer from the Simulink editor.

Step 1: Opening the Model
Open the plcdemo ladder househeat by using:
>> plcdemo ladder househeat complete

Step 2: Model Initialization

When the model is opened, it loads the information about the house from the
plcdemo ladder househeat data.m file. The file does the following:

* Defines the house geometry (size, number of windows)

* Specifies the thermal properties of house materials

* Calculates the thermal resistance of the house

* Provides the heater characteristics (temperature of the hot air, ... flow-rate)

* Defines the cost of electricity (0.09$/kWhr)

» Specifies the initial room temperature (20 deg. Celsius = 68 deg. ... Fahrenheit)

Note: Time is given in units of hours. Certain quantities, like air flow-rate, are expressed per hour
(not per second).

24-47

24 Examples Book

Set Point

Set Point Heater cmd

Range
Avg Outdoar

: ::"] : Toutdoors

Step 3: Understanding Model Components

Temperature Control via Ladder Logic

]
L-P Tindoors

h 4

heater crmd

» Range Tindoors ——

Toutdoors
Temperature Controller

House

Daily Temp
Wariation

24-48

Set Point
Set Point is a constant block. It specifies the temperature that must be maintained indoors. It is 70
degrees Fahrenheit by default. Temperatures are given in Fahrenheit, but then are converted to
Celsius to perform the calculations.
Range
Range is a constant block. This specifies the range around the Set Point for the room temperature to
fluctuate. It is 5 degrees Fahrenheit by default. Hence, the room temperature will fluctuate between
Set L and Set _H where

Set_L. = Set Point — Range

Set_H = SetPoint + Range
Temperature Controller
Temperature Controller is a subsystem that has a AOI Runner container. Inside this temperature
controller AOI Runner is a Ladder Diagram Function Block. Double click this block and select Logic
routine to view the ladder logic for the temperature controller.

House

House is a subsystem which models the outside environment, house and the heater dynamics. Refer
to the Thermal Model of House example for more information on these.

Ladder Logic

Temperature Control Simulation and Code Generation Using Ladder Logic

Open the Temperature Controller > Ladder Diagram Function Block > Logic Routine

to view the ladder diagram for the temperature controller

ADD

CALC DN

SUB OTE Fung 1
Variahle Read
I:x.__ Variable Read2
SET s MDD \anabie Write .
- . SET ™A SUB Varinble Wrila1
. comt—» SETH -~
OFFSET |—wwes ~‘—‘ —— s sETL
- OFFSET |—wmsncB -
Vanatie Raadl -
Varabie Read3
GEQ
TEMP_H

OTE1 Rurg 2

Reom Temperature
THERM] M GEQ -

"'\-\
BET_H __,.J_b srchl

High Temp Setting

LEQ

TEMP_L
OTEZ Fursg 3

Room Temperature1 ; A
THERM .-\-‘J—- sreA LEO I

e
SET L J:J—b sl

Lo Tamg SéLung

A
~

HEATER
OTEZ Fung 4

TEMP H
G ®I0

I —

. {

The first rung calculates the Sef I and Set _H values based on the Set Point and Range inputs.
The GEQ activates the TEMP_H coil if the Room Temperature is greater than or equal to the SET H.
Similarly, The LEQ activates the TEMPL L coil if the Room Temperature is less than or equal to the
SET L value.

The lowermost rung turns the heater ON if the TEMP_L output is active and turns the hearer OFF if
the TEMP_H output is active.

Step 4: Run the Simulation
Click Run button to start simulation. Open HMI and use the following controls:

+ Temperature Controller Settings: Allows changing the Set Point and Range input values.

* Ambient Temperature: Allows changing the average outside temperature and the range of its
variation.

* Room Temperature: Displays the heater status, and the inside and outside temperature graphs.
Step 5: Generate Simulink Design Verifier Test Cases

Preprocess the Simulink model for SLDV Test Case generation by executing the following command
in the MATLAB Command Window:

24-49

24 Examples Book

24-50

>> plcladderoption (gcs, 'SLDV', 'on')

Open the Temperature Controller Subsystem and right click on the AOI Runner Block named
Temperature Controller. Select Design Verifier > Generate test case for
subsystem.

Step 6: Generate C code

Ensure that an ert.tlc is selected in the Code Generation tab of the Model Configuration
Parameters. Preprocess the simulink model for C/C++ code generation by executing the following
command in the MATLAB Command Window:

>> plcladderoption(gcs, 'FastSim', 'on');

Open the Temperature Controller Subsystem and right click on the AOI Runner Block named
Temperature Controller. Select C/C++ Code > Build This Subsystem.

Step 7: Ladder code and testbench generation
Open ladder tank control testbench model:
>> plcdemo ladder househeat tb

Select the Temperature Controller/ Temperature Controller Runner block and right-click
PLC Coder->Generate Code for Subsystem to generate ladder code.

To generate testbench, select the Generate testbench for subsystem option in the PLC
Configuration Parameters Dialog and generate code.

Elevator Control Simulation and Code Generation Using Ladder Logic

Elevator Control Simulation and Code Generation Using Ladder
Logic
This example shows how to model a controller for a single-car elevator in Simulink® by using ladder
logic. The elevator system is modeled as a MATLAB Function Block. The example also showcases
ladder code generation.
Step 1: Opening the Model
Open the plcdemo ladder elevator by using:
>> plcdemo ladder elevator

Step 2: Model Initialization

When the model is opened, it sets the initial values of different parameters used in elevator controller
from the plcdemo ladder elevator init.m file.

24-51

24 Examples Book

Step 3: Model Components

Simple Elevator Contol using Ladder Logic

Floor Requests HMI
E £ 1st Floor Exterior Request Button
E 2nd Floor Exterior Request Button Low Speed Contactor LS_Contactor FFD_Switch
E 3rd Floor Exterior Request Button
= ‘4th Floor Exterior Request Button
High Speed C: HS_Contactor TFD_Switch,
IntericeFloor Request 1st Floor Interior Request Button
IndericrF 2nd Floor Interior Request Button
Door Open Contactor| DO_Contactor SM_Switch
IntericeF] 3rd Floor Interior Request Button
Intericrf 4th Floor Interior Request Button
Eleator
[*{First Flaor Dump Switch Door CLose Contactor, DC_Contactor FSM_Switch
——*Top Floor Dump Switch
Selector ic Switch
Up Contactor| Up_Contactor CL_Switch
Floor Stop Magnetic Switch
Phaiocell Photocell
CL_Switch Down C Down_t OL_Switch
OL_Switch
Elevator Control System Unit Delay Elevator

Floor Requests

Floor Requests are a group of constant blocks. It specifies the indoor and outdoor floor requests to
the controller. By default all the constant blocks are set to zero.

Elevator Control System

Elevator Control Systemis a subsystem which consists of Digital Input modules(DI), Digital
Output modules(DO) and a PLC Controller. DI modules preprocess floor request input and other
sensor inputs. Similarly, DO modules preprocess output of PLC controller and sets output contactors.
PLC controller is the brain of the system. It performs all the calculations and control action.

Elevator

24-52

Elevator Control Simulation and Code Generation Using Ladder Logic

Elevator is a MATLAB function block which show cases mathematical model of a single car elevator
system.

Step 4: Run the Simulation
Click Run button to start simulation. Open HMI and use the following controls:

* Exterior Buttons: Represents the exterior floor request buttons.
+ Interior Buttons: Represents the interior floor request buttons.
» Photocell: Represents the door sensor.

Step 5: Ladder code generation
Open elevator control model:
>> plcdemo ladder elevator

Select the plcdemo ladder elevator/Elevator Control System/Elevator PLC Ladder
Diagram System/Elevator Controller block and right-click PLC Coder->Generate Code for
Subsystem to generate ladder code.

24-53

24 Examples Book

Structured Text Code Generation for Simulink Data Dictionary

This example shows how to autogenerate structured text code for a model with a Simulink Data
Dictionary Component

Prerequisites

Copy plc_sldd_ex.slx and plc_sldd_ex.sldd to the same folder in your current working directory
(CWD)

Open the model

open_system('plc _sldd ex")

yYyYyvyywy

MU ¥ 1)
/\/ p{u1 ¥ » 2)
p{uz Y2 3)
p{ Uz w3 ;-@
\y
w4 ¥4 5)
Subsystem

This model shows the use of Simulink Data Dictionary to specify model parameter and signal data and generate PLC code.
The parameters K1, K2, K3, and signals dsm1, dsm2 are defined in data dictionary file plc_sldd_ex.sldd.
To generate PLC code, open PLC Coder App. Select the Subsystem block and click the Generate PLC Code button.

The Dia[-; nostic Viewer displays hyperlinks to the generated code files, click the links to view the generated files.

Copyright 2008-2020 The Math\Warks, Inc.

24-54

Structured Text Code Generation for Subsystem Reference Blocks

Structured Text Code Generation for Subsystem Reference
Blocks
This example shows how to autogenerate structured text code for subsystem reference blocks.
Open Simulink Model

To open the Simulink test bench model, use the following command.

open_system('mSubSysRefSystemIntegration')

% H Y

TopSystem
Mote: Before code generation, copy SSRefSubSystem1, SSRefSubSystem2,
SSRefSubSystem3, refSubSystem1, refSubsystem2, refSubSystem3 and

mSubSysRefSystemIntegration SLX files to the same folder location in your
current working directory (CWD).

Caopyright 2019 The Math\WWorks, Inc.

24-55

24 Examples Book

24-56

Generate Code for the Subsystem

To generate code for the subsystem use plcgeneratecode

generatedfiles = plcgeneratecode('mSubSysRefSystemIntegration/TopSystem');

#H##
#H##
#H##
#H##
###
###
#H##

Generating PLC code for 'mSubSysRefSystemIntegration/TopSystem'.

Using <a href="matlab:configset.showParameterGroup('mSubSysRefSystemIntegration', { 'PLC Cod
Begin code generation for IDE <a href="matlab:configset.showParameterGroup('mSubSysRefSystem
Emit PLC code to file.

Creating PLC code generation report <a href="matlab:web('C:\TEMP\Bdoc20b 1465442 5924\ib8F42
PLC code generation successful for 'mSubSysRefSystemIntegration/TopSystem'.

Generated files:

plcsrc\mSubSysRefSystemIntegrat.

PLC_RemoveSSStep for Distributed Code Generation

PLC_RemoveSSStep for Distributed Code Generation

Generate structured text code for different components of your model.
Open model

Open the model by using the following command:

open_system('mSystemIntegration');

24-57

24 Examples Book

L1} L Y 1)
i 1
SubSystem1
L2} L Y
uz
L]
SubSystem2
4
>+ s 2)
Y2
= L Y
3
L]
SubSystem3

Mote: Before code generation, copy mSubSystem1, mSubSystem2,
mSubSystem3, and mSystemIntegration SLX files to the same folder
location in your current working directory (CWD).

24-58

PLC_RemoveSSStep for Distributed Code Generation

Configure Model Components for Distributed Code Generation

To autogenerate structured text code with the same ssMethod type for every component of your
model for external code integration later on, use Keep Top-Level ssMethod Name the Same as the
Non-Top Level Name. For more information, see “Keep Top-Level ssmethod Name the Same as the
Non-Top Level Name” on page 12-33 function.

Mark Externally Defined Variables

1 Open the Simulink PLC Coder app. For more information, see Simulink PL.C Coder.
Select the TopSystem block.

3 Click Settings. Navigate to PLC Code Generation > Identifiers. In the Identifier Names
box enter Subsysteml, Subsystem2,Subsystem3.

4 Click OK.
Code Generation

1 Open the Simulink PL.C Coder app. For more information, see Simulink PLC Coder.
2 Select the Subsysteml block.

3 Click Settings. Navigate to PLC Code Generation > Identifiers. Select the Keep top level
ssMethod name same as non-top level check box.

4 Click OK.
Repeat steps 2 through 4 for SubSystem2, SubSystem3, and TopSystem.

Generate Code for the Subsystem

To generate code for the individual subsystem use the plcgenerate code function:
plcgeneratecode('mSystemIntegration/TopSystem/SubSystem1');
plcgeneratecode('mSystemIntegration/TopSystem/SubSystem?2');

plcgeneratecode('mSystemIntegration/TopSystem/SubSystem3');

Generate Code for the Integrated Model
To generate code for the integrated model:

plcgeneratecode('mSystemIntegration/TopSystem');

See Also

More About

. “Generated Code Structure for PLC RemoveSSStep” on page 23-3
. “Distributed Model Code Generation Options” on page 23-2

24-59

24 Examples Book

Structured Text Code Generation for Enum To Integer
Conversion

Autogenerate structured text code for enum to integer conversion model.

Load enum class

For this example, the myEnum.m script loads the enum class definition. Place this script file in the
same project folder as the plc_enum to_ int model file.

Open the model

open_system('plc enum to int.slx")

_/ pl1 1 NED)

Subsystem

This model shows PLC code generation for enum to integer type conversion.

To generate PLC code, open PLC Coder App. Select Settings->PLC Code Generation->General options->Target IDE and
choose Target IDE that supports enum type. Select Settings->PLC Code Generation->|dentifiers->Generate enum cast function.
Click the Subsystem block and click the Generate PLC Code button.

The Diagnostic Viewer displays hyperlinks to the generated code files, click the links to view the generated files.

Copyright 2000-2020 The MathWarks, Inc.

24-60

Structured Text Code Generation for Integer To Enum Conversion

Structured Text Code Generation for Integer To Enum
Conversion

This example shows how to autogenerate structured text code for integer to enum conversion model.

Load enum class

For this example, the myColor.m script loads the enum class definition. Place this script file in the
same project folder as the plc_int to enum model file.

Open the model

open_system('plc int to enum.slx")

3 1 i 1)

Out1

Constant

Subsystem

This model shows PLC code generation for integer to enum type conversion.

To generate PLC code, open PLC Coder App. Select Settings->PLC Code Generation->General options->Target IDE and
choose Target IDE that supports enum type. Select Settings->PLC Code Generation->|dentifiers->Generate enum cast function.
Click the Subsystem block and click the Generate PLC Code button.

The Diag nostic Viewer displays hyperlinks to the generated code files, click the links to view the generated files.

Copyright 2008-2020 The MathWarks, Inc.

24-61

24 Examples Book

PLC PreventExternalVarlinitialization for Distributed Code
Generation

24-62

Generate structured text code for different components of your model.
Open model
Open the model by using the following command:

open_system('External Var Distributed Codegen');

Copyright 2020 The MathWorks, Inc.

Configure Model Components for Distributed Code Generation

To autogenerate structured text code by preventing initialization statements for externally defined
variables for external code integration later on, use remove Initialization Statements for Externally
Defined State Variables. for more information, see “Remove Initialization Statements for Externally
Defined State Variables” on page 12-34.

Mark Externally Defined Variables

Open the Simulink PL.C Coder app. For more information, see Simulink PL.C Coder.
Select the Subsystem block.

Click Settings. Navigate to PLC Code Generation > Identifiers. In the Identifier Names
box enter childl,child2,DSExportedGlobal.

4 Click OK.
Code Generation

Open the Simulink PL.C Coder app. For more information, see Simulink PL.C Coder.
Select the Subsystem block.

Click Settings. Navigate to PLC Code Generation > Interface. Select the Remove
Initialization Statements for externally defined state variables check box.

4 Click OK.
Generate Code for the Subsystem

To generate code for the individual subsystem use the plcgenerate code function:

PLC_PreventExternalVarlnitialization for Distributed Code Generation

plcgeneratecode('External Var Distributed Codegen/Subsystem');

Related Topics

“Generated Code Structure for PLC PreventExternalVarlnitialization” on page 23-5.

See Also

More About

. “Generated Code Structure for PLC PreventExternalVarlnitialization” on page 23-5
. “Distributed Model Code Generation Options” on page 23-2

24-63

24 Examples Book

Simulation and Structured Text Generation For MPC Controller

Block

24-64

This example shows how to simulate and generate Structured Text for an MPC Controller block using
Simulink® PLC Coder™ software. The generated code uses single-precision.

Required Products

To run this example, MPC Toolbox, Simulink and Simulink PLC Coder are required.

if ~mpcchecktoolboxinstalled('simulink")
disp('Simulink is required to run this example.')
return

end

if ~mpcchecktoolboxinstalled('plccoder')
disp('Simulink PLC Coder is required to run this example.');
return

end

if ~mpcchecktoolboxinstalled('mpc')
disp('MPC Toolbox is required to run this example.');
return

end

Define Plant Model and MPC Controller
Define a SISO plant.

plant = ss(tf([3 1],[1 0.6 1]));

Define the MPC controller for the plant.

Ts = 0.1; %Sample time

p = 10; %Prediction horizon

m= 2; %Control horizon

Weights = struct('MV',0, 'MVRate',0.01,'0V',1); % Weights

MV = struct('Min',-Inf, 'Max',Inf, 'RateMin',-100, 'RateMax',100); % Input constraints
0V = struct('Min',-2,'Max"',2); % Output constraints

mpcobj = mpc(plant,Ts,p,m,Weights,MV,0V);

Simulate and Generate Structured Text
Open the Simulink model.

mdl = 'mpc_plcdemo';
open_system(mdl)

Simulation and Structured Text Generation For MPC Controller Block

O |
] mo Um = Axv+ Bu
| double > . > y1
ooon v=0Cx4+ Do
ao] i
Control System o C]
Inputs
r(t)
- r [U
>)
-
Copyright 1920-2014 The MathWoaorks, Inc. Outputs/Refarences
|| = [=] 3
File Tools View Simulation Help o

G- 4P ® | =-qQ-[F-] 7

Ready Sample based

To generate structured text for the MPC Controller block, complete the following two steps:

* Configure the MPC block to use single-precision data. Set the Output data type property of the
MPC Controller block to single.

open_system([mdl '/Control System/MPC Controller'])

24-65

24 Examples Book

MPC b (7))

7y

ref

ref

* Put the MPC block inside a subsystem block and treat the subsystem block as an atomic unit.
Select the Treat as atomic unit property of the subsystem block.

- h
"k Function Block Parameters: Contral System ﬁ

Subsystem

Select the settings for the subsystem block. To enable parameters on
the Code Generation tab, on the Main tab, select 'Treat as atomic
unit',

Main Code Generation |

Show port labels [FromPortIcon ']

Read/Write permissions: [ReadWrite ']

Mame of error callback function:

Permit hierarchical resolution: | All A

Treat as atomic unit
[”] Minimize algebraic loop occurrences
Sample time (-1 for inherited):

-1

[0K H Cancel H Help Apply

e

Simulate the model in Simulink.

close system([mdl '/Control System/MPC Controller'l])
open_system([mdl '/Outputs//References'])
open_system([mdl '/Inputs'])

sim(mdl)

-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measure

24-66

Simulation and Structured Text Generation For MPC Controller Block

[= [=] 3

File Tools View Simulation Help o

@- 40P ® | =-|a- B>

Ready Sample bazed | T=10.000
[(=T | /1 >
File Tools View Simulation Help u

@-40P® | =-a-E-”

Ready Sample based | T=10.000

To generate code with the PLC Coder, use the plcgeneratecode command.

disp('Generating PLC structure text... Please wait until it finishes.')
plcgeneratecode([mdl '/Control System']);

24-67

24 Examples Book

24-68

Generating PLC structure text... Please wait until it finishes.

Generating PLC code for 'mpc_plcdemo/Control System'.

Using <a href="matlab:configset.showParameterGroup('mpc_plcdemo', { 'PLC Code Generation' }
Begin code generation for IDE <a href="matlab:configset.showParameterGroup('mpc _plcdemo', {
Emit PLC code to file.

Creating PLC code generation report <a href="matlab:web('C:\TEMP\Bdoc20b 1465442 5924\ib8F42
PLC code generation successful for 'mpc_plcdemo/Control System'.

Generated files:

plcsrc\mpc_plcdemo.exp

[= =] &3

File Tools View Simulation Help o

- 4OP® | =-a-E->

Resady Sample bazed | T=0.000

Simulation and Structured Text Generation For MPC Controller Block

[= =] 3

File Tools View Simulation Help u

@-40P® | =-a-E-”

Ready Sample based | T=0.000

The Message Viewer dialog box shows that PLC code generation was successful.

r"'._l._ Message Viewer | = | [=] &1
= 1% % %@ ¢ oG- | @

mpc_plcdemo

- 'ba PLC Coder Generate Code &
2:34:259 BM 10/24/2013 Elap=ed:22 =ec

W PLC code generation successful for "mpc_plcdemo/Control System”.

plesrc\mpc plodemc.exp

Close the Simulink model, and return to the original directory.

24-69

24 Examples Book

bdclose(mdl)

24-70

	Getting Started
	Simulink PLC Coder Product Description
	Prepare Model for Structured Text Generation
	Tasking Mode
	Solvers
	Configuring Simulink Models for Structured Text Code Generation
	Check System Compatibility for Structured Text Code Generation

	Generate and Examine Structured Text Code
	Generate Structured Text from the Model Window
	Generate Structured Text with the MATLAB Interface
	View Generated Code

	Propagate Block Descriptions to Code Comments
	Files Generated by Simulink PLC Coder
	Specify Custom Names for Generated Files
	Import Structured Text Code Automatically
	PLC IDEs That Qualify for Importing Code Automatically
	Generate and Automatically Import Structured Text Code
	Troubleshoot Automatic Import Issues

	Using Simulink Test with Simulink PLC Coder
	Limitations

	Simulation and Code Generation of Motion Instructions
	Workflow for Using Motion Instructions in Model
	Simulation of the Motion API Model
	Structured Text Code Generation
	Adding Support for Other Motion Instructions

	Mapping Simulink Semantics to Structured Text
	Generated Code Structure for Simple Simulink Subsystems
	Generated Code Structure for Reusable Subsystems
	Generated Code Structure for Triggered Subsystems
	Generated Code Structure for Stateflow Charts
	Stateflow Chart with Event Based Transitions
	Stateflow Chart with Absolute Time Temporal Logic

	Generated Code Structure for MATLAB Function Block
	Generated Code Structure for Multirate Models
	Generated Code Structure for Subsystem Mask Parameters
	Global Tunable Parameter Initialization for PC WORX
	Considerations for Nonintrinsic Math Functions

	Generating Ladder Diagram
	Simulink PLC Coder Ladder Diagram Code Generation
	Ladder Diagram Generation Workflow

	Prepare Chart for Simulink PLC Coder Ladder Diagram Code Generation
	Design PLC Application with Stateflow
	Create Test Harness for Chart

	Generate Simulink PLC Coder Ladder Diagram Code from Stateflow Chart
	Stateflow Chart and Ladder Logic Diagram
	Generate Ladder Diagram from Chart
	Generate Ladder Diagram Along with Test Bench

	Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram
	Import Ladder Diagram XML
	Verify Ladder Diagram with Test Bench

	Restrictions on Stateflow Chart for Ladder Diagram Generation
	Supported Features in Ladder Diagram
	Supported Ladder Elements

	Import L5X Ladder Files into Simulink
	Description of the Ladder Diagram
	Import Ladder Diagram

	Modeling and Simulation of Ladder Diagrams in Simulink
	Model an AOI Prescan Routine
	Ladder Model Simulation

	Generating Ladder Diagram Code from Simulink
	Generating C Code from Simulink Ladder
	Verify Generated Ladder Diagram Code
	Simulink PLC Coder Workflow vs. Rockwell Automation RSLogix IDE Workflow
	Create Custom Instruction in PLC Ladder Diagram Models
	Create User-Defined Instruction
	Calculate Square Root by using Custom Instruction Block

	Generating Test Bench Code
	How Test Bench Verification Works
	Integrate Generated Code with Custom Code
	Import and Verify Structured Text Code
	Generate, Import, and Verify Structured Text
	Import and Verify Structured Text to PHOENIX CONTACT (previously KW) Software MULTIPROG 5.0 and Phoenix Contact PC WORX 6.0 IDEs
	Troubleshooting: Long Test Bench Code Generation Time

	Verify Generated Code That Has Multiple Test Benches
	Troubleshooting: Test Data Exceeds Target Data Size
	Limitations

	Code Generation Reports
	Information in Code Generation Reports
	Create and Use Code Generation Reports
	Generate a Traceability Report from Configuration Parameters
	Keep the Report Current
	Trace from Code to Model
	Trace from Model to Code
	Model Web View in Code Generation Report
	Generate a Static Code Metrics Report
	Generate a Traceability Report from the Command Line

	View Requirements Links from Generated Code
	Working with the Static Code Metrics Report
	Workflow for Static Code Metrics Report
	Report Contents
	Function Block Information

	Working with Tunable Parameters in the Simulink PLC Coder Environment
	Block Parameters in Generated Code
	Control Appearance of Block Parameters in Generated Code
	Configure Tunable Parameters with Simulink.Parameter Objects
	Make Parameters Tunable Using Configuration Parameters Dialog Box

	Controlling Generated Code Partitions
	Generate Global Variables from Signals in Model
	Control Code Partitions for Subsystem Block
	Control Code Partitions Using Subsystem Block Parameters
	One Function Block for Atomic Subsystems
	One Function Block for Virtual Subsystems
	Multiple Function Blocks for Nonvirtual Subsystems

	Control Code Partitions for MATLAB Functions in Stateflow Charts

	Integrating Externally Defined Identifiers
	Integrate Externally Defined Identifiers
	Integrate Custom Function Block in Generated Code

	IDE-Specific Considerations
	Integrate Generated Code with Siemens IDE Project
	Integrate Generated Code with Siemens SIMATIC STEP 7 Projects
	Integrate Generated Code with Siemens TIA Portal Projects

	Use Internal Signals for Debugging in RSLogix 5000 IDE
	Rockwell Automation RSLogix Requirements
	Add-On Instruction and Function Blocks
	Double-Precision Data Types
	Unsigned Integer Data Types
	Unsigned Fixed-Point Data Types
	Enumerated Data Types
	Reserved Keywords
	Rockwell Automation IDE selection

	Siemens IDE Requirements
	Target PLCs and Supported Data Types
	Double-Precision Floating-Point Data Types
	int8 Data Type and Unsigned Integer Types
	Unsigned Fixed-Point Data Types
	Enumerated Data Types

	Selectron CAP1131 IDE Requirements
	Double-Precision Floating-Point Data Types
	Enumerated Data Types

	Supported Simulink and Stateflow Blocks
	Supported Blocks
	View Supported Blocks Library
	Supported Simulink Blocks
	Supported Stateflow Blocks
	Blocks with Restricted Support

	Limitations
	Structured Text Code Generation Limitations
	General Limitations
	Restrictions
	Negative Zero
	Divide by Zero
	Fixed-Point Data Type Multiword Operations

	Ladder Logic Code Generation Limitations
	plcladderlib Limitations
	Ladder Diagram Import Limitations
	Ladder Diagram Modeling and Simulation Limitations
	Ladder Diagram Code Generation Limitations
	Ladder Diagram Verification Limitations

	Configuration Parameters for Simulink PLC Coder Models
	PLC Coder: General
	PLC Coder: General Tab Overview
	Target IDE
	Show Full Target List
	Target IDE Path
	Code Output Directory
	Generate Testbench for Subsystem
	Include Testbench Diagnostic Code
	Generate Functions Instead of Function Block
	Allow Functions with Zero Inputs
	Suppress Auto-Generated Data Types
	Emit Data type Worksheet Tags for PCWorx
	Aggressively Inline Structured Text Function Calls

	PLC Coder: Comments
	Comments Overview
	Include Comments
	Include Block Description
	Simulink Block / Stateflow Object Comments
	Show Eliminated Blocks

	PLC Coder: Optimization
	Optimization Overview
	Default Parameter Behavior
	Signal Storage Reuse
	Remove Code from Floating-Point to Integer Conversions That Wraps Out-Of-Range Values
	Generate Reusable Code
	Inline Named Constants
	Reuse MATLAB Function Block Variables
	Loop Unrolling Threshold

	PLC Coder: Identifiers
	Identifiers Overview
	Use Subsystem Instance Name as Function Block Instance Name
	Override Target Default Maximum Identifier Length
	Maximum Identifier Length
	Override Target Default enum Name Behavior
	Generate enum Cast Function
	Use the Same Reserved Names as Simulation Target
	Reserved Names
	Externally Defined Identifiers
	Preserve Alias Type Names for Data Types

	PLC Coder: Report
	Report Overview
	Generate Traceability Report
	Generate Model Web View
	Open Report Automatically

	PLC Coder:Interface
	Interface Overview
	Generate Logging Code
	Keep Top-Level ssmethod Name the Same as the Non-Top Level Name
	Remove Top-level Subsystem Ssmethod Type
	Remove Initialization Statements for Externally Defined State Variables
	Absolute-Time Temporal Logic

	External Mode
	External Mode Logging
	Generate Structured Text Code with Logging Instrumentation
	Use the Simulation Data Inspector to Visualize and Monitor the Logging Data
	Set Up and Download Code to the Studio 5000 IDE
	Configure RSLinx OPC Server
	Use PLC External Mode Commands to Stream and Display Live Log Data

	Ladder Diagram Instructions
	Instructions Supported in Ladder Diagram

	Ladder Diagram Blocks
	Ladder Diagram Blocks

	Fixed Point Code Generation
	Block Parameters
	Model Parameters
	Limitations

	Generating PLC Code for Multirate Models
	Multirate Model Requirements for PLC Code Generation
	Model Configuration Parameters
	Limitations

	Generating PLC Code for MATLAB Function Block
	Configuring the rand function for PLC Code generation
	Width block requirements for PLC Code generation
	Workspace Parameter Data Type Limitations
	Limitations

	Model Architecture and Design
	Fixed Point Simulink PLC Coder Structured Text Code Generation
	Block Parameters
	Model Parameters
	Limitations

	Generating Simulink PLC Coder Structured Text Code For Multirate Models
	Multirate Model Requirements for PLC Code Generation

	MATLAB Function Block Simulink PLC Coder Structured Text Code Generation
	Configuring the rand function for PLC Code Generation
	SimulinkWidth Block Requirements for PLC Code generation
	Workspace Parameter Data Type Limitations
	Limitations

	PLC Coder Code Deployment
	Deploy Structured Text
	Learning Objectives
	Prerequisites
	Workflow
	Importing Generated Structured Text Code Manually

	Deploy Ladder Diagram
	Learning Objectives
	Prerequisites
	Workflow
	Importing Generated Ladder Diagram Code Manually

	Simulink PLC Coder Structured Text Code Generation For Simulink Data Dictionary (SLDD)
	Structured Text Code Generation Support for Simulink Data Dictionary
	Limitations

	Generate Structured Text Code For Simulink Data Dictionary Defined Model Parameters
	Learning Objectives
	Requirements
	Workflow

	Simulink PLC Coder Structured Text Code Generation For Enumerated Data Type
	Structured Text Code Generation for Enum To Integer Conversion
	IDE Limitations

	Distributed Code Generation with Simulink PLC Coder
	Distributed Model Code Generation Options
	Generated Code Structure for PLC_RemoveSSStep
	Generated Code Structure for PLC_PreventExternalVarInitialization
	PLC_RemoveSSStep for Distributed Code Generation
	Structured Text Code Generation for Subsystem Reference Blocks
	Distributed Code Generation Limitations

	Examples Book
	Generate Structured Text Code for a Simple Simulink® Subsystem
	Generating Structured Text for a Simple Simulink® Subsystem without Internal State
	Generating Structured Text for a Hierarchical Simulink® Subsystem with Virtual Subsystems
	Generating Structured Text for a Hierarchical Simulink® Subsystem
	Generating Structured Text for a Reusable Simulink® Subsystem
	Generating Structured Text for a Simple Simulink® Subsystem Using Multirate
	Simulate and Generate Structured Text Code for a Stateflow® Chart
	Generating Structured Text for a MATLAB® Block
	Generating Structured Text for a Feedforward PID Controller
	Mapping Tunable Parameters to Structured Text
	Mapping Tunable Parameters Defined Using Simulink.Parameter Objects to Structured Text
	Simulate and Generate Code for Speed Cruise Control System
	Variable Step Speed Cruise Control System
	Simulate and Generate Code for Airport Conveyor Belt Control System
	Generating Structured Text for Simulink® Model with Fixed-Point Data Types
	Generating Structured Text for Stateflow® Chart with Absolute Time Temporal Logic
	Integrating User Defined Function Blocks, Data Types, and Global Variables into Generated Structured Text
	Simulating and Generating Structured Text Code for Rockwell Motion Instructions
	Tank Control Simulation and Code Generation by Using Ladder Logic
	Using Timers in Ladder Logic
	Temperature Control Simulation and Code Generation Using Ladder Logic
	Elevator Control Simulation and Code Generation Using Ladder Logic
	Structured Text Code Generation for Simulink Data Dictionary
	Structured Text Code Generation for Subsystem Reference Blocks
	PLC_RemoveSSStep for Distributed Code Generation
	Structured Text Code Generation for Enum To Integer Conversion
	Structured Text Code Generation for Integer To Enum Conversion
	PLC_PreventExternalVarInitialization for Distributed Code Generation
	Simulation and Structured Text Generation For MPC Controller Block

